
Generating Timed UI Tests from
Counterexamples

Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

University of Passau, Germany

Abstract. One of the largest communities on learning programming and
sharing code is built around the Scratch programming language, which
fosters visual and block-based programming. An essential requirement
for building learning environments that support learners and educators is
automated program analysis. Although the code written by learners is
often simple, analyzing this code to show its correctness or to provide
support is challenging, since Scratch programs are graphical, game-like
programs that are controlled by the user using mouse and keyboard. While
model checking offers an effective means to analyze such programs, the
output of a model checker is difficult to interpret for users, in particular
for novices. In this work, we introduce the notion of Scratch error
witnesses that help to explain the presence of a specification violation.
Scratch error witnesses describe sequences of timed inputs to Scratch
programs leading to a program state that violates the specification. We
present an approach for automatically extracting error witnesses from
counterexamples produced by a model checking procedure. The resulting
error witnesses can be exchanged with a testing framework, where they
can be automatically re-played in order to re-produce the specification
violations. Error witnesses can not only aid the user in understanding the
misbehavior of a program, but can also enable the interaction between
different verification tools, and therefore open up new possibilities for the
combination of static and dynamic analysis.

Keywords: Error Witnesses · Model Checking · Reachability · Dynamic
Analysis · Test Generation · Block-Based Programming · UI Testing

1 Introduction

Block-based programming languages like Scratch have gained momentum as
part of the general trend to integrate programming into general education. Their
widespread use will crucially depend on automated program analysis to enable
learning environments in which learners and educators receive the necessary help
for assessing progress, finding errors, and receiving feedback or hints on how to
proceed with a problem at hand. Although learners’ programs tend to be small
and their code is usually not very complex, Scratch programs nevertheless
pose unique challenges for program analysis tools: they are highly concurrent,
graphical, driven by user interactions, typically game-like and nondeterministic,
and story-components and animations often lead to very long execution times.

2 Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

⟦ ⟧

ARG

Visualization

(with Whisker)
Dynamic AnalysisStatic Analysis

(with Bastet)

Program

Specification

Witness

⟦ ⟧ ⟦ ⟧

Witness

1.

2.

3.

4.

Fig. 1. Generation, verification, and visualization of Scratch error witnesses

Model checking has been suggested as a solution for tackling these challenges [19],
but verification results such as counterexamples are abstract and neither suitable
for interpretation by learners, nor for application in dynamic analysis tools that
aim to generate explanations or hints.

Observing program executions in terms of the user interactions and their
graphical responses is potentially a more intuitive way to communicate counterex-
amples to learners, as it hides all details of the internal models of the analysis
and verification tool and instead shows what a user would see. In this paper
we therefore introduce the concept of Scratch error witnesses as a means
to explain the presence of specification violations, and describe an automatic
approach for extracting error witnesses for Scratch programs from counterex-
amples. Scratch error witnesses describe sequences of timed inputs (e.g., mouse
and keyboard inputs) to Scratch programs leading to a program state that
violates the specification. Error witnesses are, essentially, UI tests, and thus
enable any form of dynamic analysis to help produce more elaborate explanations
or feedback, such as fault localization or generation of fix suggestions.

Figure 1 provides an overview of the overall process of generating, verifying,
and visualizing error witnesses. A Scratch program and its formal specifica-
tion is given 1. to the static analysis tool, in this case to Bastet [19]. To
analyze the program, Bastet constructs an abstract reachability graph (ARG),
which represents an overapproximation of all possible states and behaviors of
the program—a node in this graph is an abstract state, representing a set of
concrete program states. When Bastet runs into an abstract state in which
the specification is violated, an error witness w is produced. An abstract witness
may represent multiple concrete test candidates, and depending on the analysis
configuration of Bastet (for example, model checking, or data-flow analysis),

Generating Timed UI Tests from Counterexamples 3

some of these may be false positives. To increase confidence in the witness, it is
handed over 2. to a dynamic analysis (in this case Whisker [20]), which runs the
tests that are described by the witness, and produces a new error witness w′

3. ,
with [[w′]] ⊆ [[w]]. In case none of the tests in w are feasible, the result is an
empty witness, that is, [[w′]] = ∅. With this increased confidence in the presence
of a specification violation, the refined witness can be visualized 4. for the user,
without reducing his or her trust in the analysis results. Trust in analysis results
is crucial, for example, for learners who are not familiar with program analysis,
and for automated grading or feedback approaches.

Error witnesses do not only have the potential to aid the user in understanding
the misbehavior of a program, but they can also be exchanged among different
verification tools [3]. This makes it possible to take advantage of the complemen-
tary strengths of both dynamic and static analyses. For example, one can use
dynamic analysis for verifying the witnesses, for applying fault localization to
narrow down the origin the failure, for generating fixes and repair suggestions, or
for guiding the state-space exploration to reach a particular state. Error witnesses
thus lay the foundations for future research on presenting counterexamples for
specification violations in Scratch programs to users.

2 Preliminaries

We stick to the notation that is used in recent work on formalizing Scratch
programs [19,20]. Uppercase letters A, . . . , Z denote sets, lowercase letters a, . . . , z
denote set elements. Sequences are enclosed in angled brackets ⟨a1, a2, . . .⟩, tuples
are enclosed in parentheses (a1, b1, . . .), sets are enclosed in curly braces {a1, . . .}.
Symbols with an overline a denote sequences, lists, or vectors. Symbols with a
hat â denote sets. Symbols with a tilde ã denote relations. The set of all finite
words over an alphabet A is denoted by A∗, the set of all infinite words by Aω.

Scratch Program A Scratch program App is defined by a set A of actors.
There is at most one actor that fills the role of the stage and several other actors
that are in the sprites role [16]. An actor [19] can be instantiated several times;
each actor instance is represented by a list of processes. A concrete state c ∈ C
of a program is a list of concrete process states c = ⟨p1, . . . , pn⟩. A process state
pi : X → V is a mapping of typed program variables x ∈ X to their values v ∈ V .

A concrete program trace is a sequence c ∈ C∞ of concrete program states.
The set of all possible concrete program traces C∞ = C∗ ∪Cω consists of the set
of finite traces C∗ and the set of infinite traces Cω [19]. The semantics [[App]]
of a Scratch [16,19] program App are defined by the set of concrete program
traces it exhibits, that is, [[App]] ⊆ C∞.

Scratch programs and their actors have a well-defined set of programs
with defined meaning, along with user-defined variables. The variables are either
actor-local or globally scoped. The set of actor-local variables of sprite actors
includes, for example, the variables {x, y, direction}, which define the position and
orientation of a sprite.

Abstract Domain To cope with the restrictions of reasoning about programs,
abstraction is needed [8]. Multiple concrete states can be represented by an

4 Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

abstract state. The abstract domain D = (C,
...
E , ⟨⟨·⟩⟩, [[·]], ⟨⟨·⟩⟩π, Π) [19] determines

the mapping between abstract states E and concrete states C. An inclusion
relation between the abstract states E is defined by the partial order ⊑⊆ E ×E
of the lattice

...
E = (E,⊑,⊔,⊓,⊤,⊥). The mapping between the abstract and

concrete world is realized in the concretization function [[·]] : E → 2C and the
abstraction function ⟨⟨·⟩⟩ : 2C → E. The widening function ⟨⟨·⟩⟩π : E × Π →
E computes an abstraction of a given abstract state by removing irrelevant
details according to the abstraction precision π ∈ Π by defining an equivalence
relation π : C → 2C . We also use formulas F in predicate logic to describe sets
of concrete states: a formula ϕ ∈ F denotes [[ϕ]] ⊆ C a set of concrete states.

Abstract Reachability Graph A reachability analysis constructs an abstract
reachability graph to determine whether or not a target state is reachable; it
proves the absence of such a state if a fixed point is reached, that is, all states have
been visited. An abstract reachability graph is a directed graph R = (E, e0,⇝)
of abstract states E rooted in the initial abstract state e0 ∈ E. The structure
of the reachability graph R is determined by its transition relation ⇝⊆ E × E
and we write e ⇝ e′ iff (e, e′) ∈⇝. An abstract (program) trace is a finite
sequence e = ⟨e0, . . . , en−1⟩ where each pair (e, e′) ∈ e is an element of the
transition relation ⇝. Each abstract (program) trace e denotes a possibly infinite
set of concrete program traces [[e]] ⊆ C∞. An abstract trace is feasible, if and
only if [[e]] ∩ [[App]] ̸= ∅, otherwise it is infeasible.

Each transition e
op
⇝ e′ of the abstract reachability graph can be labeled with

a sequence op = ⟨op1, . . . , opn⟩ ∈ Op∗ of program operations executed to arrive
at the abstract successor state e′. The set of program operations Op consists of
operations of various types, which can manipulate or check the set of program
variables [19]. A Scratch block corresponds to a sequence of operations from Op.
To simplify the description, we extend Op with call and return operations, where
a call represents the beginning of the execution of such a sequence of operations,
and a return marks its end.

Static Reachability Analysis A static analysis (typically) conducts a reach-
ability analysis by creating an overapproximation [8] of all possible states and
state sequences of the program under analysis. The resulting abstract reachability
graph R possibly denotes (in case the analysis terminated with a fixed point) a
larger set of program traces than the original program has, that is, [[App]] ⊆ [[R]].
An example for a static analysis framework is Bastet [19], which focuses on
analyzing Scratch programs. An operator target : E → 2S determines the set
of properties that are considered violated by a given abstract state.

Dynamic Reachability Analysis Dynamic program analyses are also a form
of reachability analysis: The program under execution is steered by an input gen-
erator and its behavior is observed by a monitor process. The tool Whisker [20]
guides a Scratch program App in its original execution environment by sending
user inputs or providing mocks for functions that interact with the environment,
while observing the resulting behavior of App. No abstract semantics are used.
In contrast to static reachability analysis the results are always sound.

Generating Timed UI Tests from Counterexamples 5

3 Scratch Error Witnesses

In general, an error witness is an abstract entity that describes inputs from the
user and the environment to reproduce (to witness) the presence of a specification
violation [3]. By not defining all inputs explicitly and keeping them nondetermin-
istic, the degree of abstractness can be varied: An error witness can be refined
by making more inputs deterministic, and it can be abstracted by increasing
nondeterminism. In this work, we aim at error witnesses for Scratch programs
that can be produced and consumed by both static and dynamic analyses, and
that are easy to visualize and follow by users, for example, by novice program-
mers. Scratch error witnesses perform actions that could potentially also be
conducted by a user controlling the Scratch program manually and provide
means to mock parts of the Scratch environment to control input sources that
would behave nondeterministically otherwise.

Note that while a Scratch program can exhibit infinite program traces,
the counterexamples and error witnesses we discuss in this work are finite, that
is, describing the violation of safety properties—witnessing that something bad
(undesired) can happen after finitely many execution steps. We do not consider
this to be a practically relevant limitation of our approach since bounded liveness
properties—requiring that something good happens within a finite time span—are
also safety properties.

A Scratch error witness is a tuple that defines inputs from the user and
the environment to reproduce a specification violation in a particular program.
Formally, it is a tuple (m̃, u, s) ∈ W consisting of a mock mapping m̃ : Op → M ,
a finite sequence of timed user interface inputs u = ⟨u1, . . . , un⟩ ∈ U∗, and the
property s ∈ S that is supposed to be violated. The mock mapping is a partial
function from the set of operations Op to the mocks M by which to substitute
the functionality. A timed user input u = (d, a) ∈ R×A is a tuple consisting of
an input delay d ≥ 0 in milliseconds, and an action a ∈ A to perform after the
delay d elapsed. Note that we abstract from the fact that one mock instance can
replace operations of Op of several actor instances. The set of all error witnesses
is denoted by W .

For debugging purposes, a timed user input can be enriched by an expected
state condition p ∈ F , which is a formula in predicate logic on the state of a
Scratch program that characterizes the states that are expected to be reached
after conducting the action, that is, [[p]] ⊆ C. The expected state condition can
be used to (1) check if the witness replay steers the program execution to the
expected state space region, and to (2) provide details to the user on the sequence
of concrete program states leading to the specification violation.

3.1 User Inputs

Scratch programs are controlled by the user mainly using mouse and keyboard
input actions. To specify possible input actions, we adopt an existing grammar [20]
to formulate such actions—with the natural numbers N and the set of Unicode

6 Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

characters L. An input action a ∈ A is built based on the following grammar:

input = Epsilon | KeyDown key | KeyUp key | MouseDown pos |
MouseUp pos | MouseMoveTo pos | TextInput text

key = keycode code

pos = xpos x ypos y

text = txt string

code ∈ N, string ∈ L∗, x ∈ [−240..240], y ∈ [−180..180]

3.2 Mocks

Mocks replace specified operations in specified actor instances to control the
program execution and steer it towards a target state. Compared to a stub, a
mock is stateful, that is, the value returned by the mock and side effects can be
different from call to call, depending on its internal state.

A Scratch block (represented by a sequence of operations from Op) that
is supposed to return a new random number with each call (a random number
generator) is a typical example that has to be mocked to reproduce a partic-
ular behavior. That is, any block that leads to some form of nondeterministic
program execution is a good candidate to be mocked. Scratch allows to add
various (custom) extensions—to use Scratch for programming hardware compo-
nents, such as Lego Mindstorms—that add additional variables (or inputs) that
require mocking. For example, to sense the motor position, distance, brightness,
or acceleration. Even mocking date or time functions might be necessary to
reproduce a specific behavior within a dynamic analysis.

We distinguish between different types of mocks. The set of all possible mocks
is denoted by the symbol M .

Conditional Effects A mock with conditional effects (op0, p, op, r) is initialized
by a sequence of program operations op0 ∈ Op∗ before its first invocation,
describes a sequence of state-space conditions p = ⟨p1, . . . , pn⟩ ∈ F∗, and has a
sequence of assignment sequences op = ⟨op1, . . . , opn⟩ ∈ (Op∗)

∗
and a sequence

of mock return values r = ⟨r1, . . . , rn⟩ ∈ V ∗. An initialization operation op ∈ op0

can, for example, declare and initialize mock-local variables to keep track of the
mock’s state between different invocations. We require that |op| ∈ {|p|, 0} and
|r| ∈ {|p|, 0} (a mock might not produce a return value, or might not conduct
any operations but return a value). In case the current program state c is in
one of the regions described by a state-space condition pi when the mock is
invoked, that is, if c ∈ [[pi]], then also the operation sequence opi is performed
and the value ri returned. A condition p is a formula in predicate logic over the
program’s variables—including those local to the current actor or mock, and
global variables. A nondeterministic (random) value is returned in case none of
the conditions pi ∈ p was applicable for an invocation.

Mocks with sequential effects and those with timed effects are specializations
of mocks with conditional effects:

Generating Timed UI Tests from Counterexamples 7

Algorithm 1 testGen(App)

Input: A Scratch program App to verify
Output: A set of error witnesses W (empty if the program is safe)
1: (frontier, reached)← initApp()
2: (·, reached)← wrapped(frontier, reached)
3: targets← {e | target(e) ̸= ∅ ∧ e ∈ reached}
4: return

⋃
t∈targets toWitness(testify♮1(reached, t))

Sequential Effects A mock with sequential effects (op, r) ∈ (Op∗)
∗ × V ∗

describes a sequence of assignment sequences op = ⟨op1, . . . , opn⟩ and a sequence
of mock return values r = ⟨r1, . . . , rn⟩, both with the same length, that is,
|op| = |r|. The mock has an internal state variable x that tracks the number of
the mock’s invocations and corresponds to the position in the sequences. That is,
at invocation x, the sequence of assignments opx is performed and the value rx
is returned.A nondeterministic (random) value is returned in case the position x
is out of the sequences bounds.

Timed Effects A mock with timed effects (y, op, r) ∈ (R× R)∗ × (Op∗)
∗ × V ∗

describes a sequence of disjoint time (in milliseconds) intervals y = ⟨y1, . . . , yn⟩,
a sequence of assignment sequences op = ⟨op1, . . . , opn⟩, and a sequence of mock
return values r = ⟨r1, . . . , rn⟩. In case the milliseconds up ∈ R since the program
under test was started is in one of the time intervals yi, then also the operation
sequence opi is performed and the value ri returned when the mock is invoked.

4 Witness Generation

After we have introduced the notion of a user interface error witness for Scratch
programs, we now describe how such a witness can be derived from a concrete
program trace that violates the specification—which can be recorded by a dynamic
analysis tool such as Whisker and from the abstract reachability graph produced
by a static analysis framework such as Bastet.

4.1 Concrete Program Trace from an Abstract Reachability Graph

We first describe how a finite concrete program trace c = ⟨c1, . . . , cn⟩ ∈ C∞

that leads to a (violating) target state et ∈ E, with target(et) ̸= ∅ ∧ cn ∈ [[et]],
can be extracted from an abstract reachability graph. This process is typically
implemented in a procedure for model checking or model-based test generation.

The outermost algorithm of a model checker with test generation is outlined
in Alg. 1. All abstract states that have been reached by the analysis can be found
in the set reached ⊆ E, the set frontier ⊆ reached contains all abstract states
from which successor states remain to be explored. These sets are initialized by
the operator init with the initial abstract states to analyze the program App. The
actual reachability analysis is performed by the wrapped algorithm, represented
by the method wrapped, which can, for example, conduct an analysis based on
predicate abstraction [13] and counterexample-guided abstraction refinement [7].
This wrapped (pseudo) algorithm terminates when it has reached a fixed point

8 Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

without reaching a violating state or after one or more violations have been
identified. The set targets ⊆ E contains all states that violate the specification.

An abstract reachability graph R = (E, e0,⇝) describes the predecessor-
successor-relation of the states in this set—represented by the transfer rela-
tion ⇝⊆ E × E. An abstract state represents a set of concrete states, that is,
[[e]] ⊆ C. A sequence e = ⟨e0, . . . , en−1⟩ ∈ E∗ of abstract states that starts in an
initial abstract state e0 and that is well-founded in the transfer relation ⇝ is
called an abstract program trace. An abstract program trace e represents a set of
concrete program traces, i.e., [[e]] ⊆ C∗. That is, to get to a concrete program
trace c that reaches a target state e ∈ E, we first have to select a feasible abstract
program trace from graph R, and can then concretize this trace. An abstract
program trace is called feasible if it denotes at least one concrete program trace.
Note that an abstract reachability graph can also contain abstract states that do
not have a counterpart in the real world, that is, which are infeasible.

Generic Analysis Operators We define a list of new analysis operators in
line with the configurable program analysis framework [5, 19] to extract abstract
program traces and concrete program traces from a given set of reached states,
reaching a target state:

1. The abstract testification operator testify : 2E × E → 2E
∗
returns a collection

of abstract program traces. Given a set of abstract states R ⊆ reached and a
target state et ∈ E, this analysis operator returns only feasible program traces—
describing only feasible sequences of abstract states, all starting in an initial
abstract state, and all leading to the given target state et. That is, all infeasible
traces that would lead to the target are eliminated by this operator. An empty
collection is returned in case the given target state is infeasible.

The abstract single testification operator testify1 : 2
E × E → 2E

∗
strengthens

the operator testify and describes at most one feasible abstract program trace.

2. The concrete testification operator testify♮ : 2E×E → 2C
∗
returns all concrete

program traces reaching a given target state. Note that, assuming unbounded
value domains, this collection can have infinitely many elements.

The concrete single testification operator is supposed to return at most
one concrete program trace that reaches the given target state and has the
signature testify♮1 : 2E × E → 2C×C .

Note that these operators do not guarantee any particular strategy for choosing
abstract or concrete program traces. Nevertheless, different implementations
or parameterizations of these operators can be provided that realize different
strategies—contributing to the idea of configurable program analysis.

Operator Implementations The implementations of the testification operators
vary depending on the composed analysis procedure and its abstract domain—
see the literature [5, 19] for details on composing analyses. We provide a first
implementation of these operators in the Bastet program analysis framework,
in which program traces are chosen arbitrarily.

For a bounded model-checking configuration that does not compute any (block)
abstractions, concrete program traces can be produced simply by asking an SMT

Generating Timed UI Tests from Counterexamples 9

Algorithm 2 toWitness : C∗ → 2W

Input: A concrete program trace c ∈ C∗

Output: A set of error witnesses ∈ 2W

1: m̃← constructMocks(c)
2: u← constructInputSeq(c)
3: return {(m̃, u, s) | s ∈ target(t)}

Algorithm 3 constructInputSeqAx : C∗ → U∗

Input: A concrete program trace c ∈ C∗

Output: A timed input sequence ∈ U∗

1: a← ⟨⟩
2: for (op, c) in Γ (c) do
3: a← a ◦ ⟨choose({ ax(op, c) | ax ∈ Ax })⟩
4: return foldEpsilonDelays(a, c)

solver for a satisfying assignment (a model) for a formula with which a violating
state is supposed to be reached.

4.2 Error Witness from a Concrete Program Trace

We now describe how Scratch error witnesses (m̃, u, s) ∈ W can be produced
from a given finite concrete program trace c = ⟨c1, . . . , cn⟩ ∈ C∗. Such a trace
can be created from a model checking run using one of the proposed testification
operators, or can be created from the states observed while running the program
on a machine, e.g., along with a dynamic analysis. Algorithm 2 outlines the
process of generating a Scratch error witness from a concrete program trace.

We assume that there is a transition labelling function Γ : C × C → Op∗

for labelling state transitions. Given a pair c1, c2 ∈ C of concrete states, the
function returns a (possibly empty) sequence ⟨op1, . . . , opn⟩ of program operations
conducted to reach from state c1 to state c2. We extend the labelling function to
sequences, resulting in an overloaded version Γ : C∗ → (Op × C)∗ that produces
sequences of pairs of program operations and concrete (successor) states; the first
concrete state in the given concrete program trace is skipped.

Timed Inputs A witness contains the sequence of timed user inputs u =
⟨u1, . . . , un⟩ ∈ U∗, where each element ui = (d, a) ∈ u consists of a delay d ∈ R
(in milliseconds) to wait before conducting an input action a. Algorithm 3
outlines the process of creating this sequence and Fig. 2 provides a visual
perspective on the process and the example to discuss. The algorithm is implicitly
parameterized with a collection of action extractors Ax. Generally, there is
one action extractor ax ∈ Ax for each class of input action—see the grammar
of input actions in Sect. 3.1. In our example, we use 2. an extractor for the
action MouseMoveTo and a composite action extractor MouseClick that produces
two different actions (MouseDown and MouseUp, resulting in a “mouse click”).

The algorithm starts from a given 1. concrete program trace c ∈ C∗ lead-
ing to a target state that violates one or more properties ⊆ S. The trace is

10 Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

c₁ c₂
op₁

Target State

c₃
op₂

c₄
op₃

c₅
op₄

c₆
op₅

c₇
op₆

c₈
op₇

c₉
op₈

c₁₀
op₉

c₁₁
op₁₀

c₁₂
op₁₁

when this sprite clicked
mouse x mouse y

MouseClick

MouseMoveTo

1.

2.

3.

4.

Fig. 2. Generation of the sequence of timed inputs in Bastet

Algorithm 4 constructMocksMx : C∗ → 2Op×M

Input: A concrete program trace c ∈ C∗

Output: A mock mapping ⊆ Op ×M
1: return {mx(c, Γ (c)) | mx ∈ Mx}

traversed from its start to the end (with the target) state, and the action ex-
tractors are invoked along this trace. A call to the action extractor for a given
concrete state c that is reached by a program operation op returns a sequence
of input actions a to execute at this point in the resulting witness. For exam-
ple, the actions ⟨a1, a2⟩ are produced by the MouseClick action extractor for
the operation op2 reaching state c3, with a1 = MouseDown xpos 23 ypos 8 and
a2 = MouseUp xpos 23 ypos 8. This action sequence is emitted because opera-
tion op2 signaled a click to the sprite, the mouse position is extracted from
the concrete state c3. MouseMove actions are produced whenever the mouse is
expected to be on a particular position, for example, queried by a mouse x or
mouse y Scratch block. The result 3. of applying the action extractors along

the trace is a sequence a ∈ A∗∗ of sequences of input actions. In case multiple
action extractors provide a non-empty sequence for a particular position along
the trace, the operator choose chooses an action sequence based on priorities. In
the last step 4. , empty elements (containing an empty sequence) are eliminated
from a and a delay is added that determines how long to wait before executing a
particular action. This functionality is provided by the function foldEpsilonDelays.

Mock Mappings A Scratch error witness contains a mock mapping m̃ :
Op → M , which specifies mocks used for substituting particular operations of
the program or the runtime environment to steer a program execution (or a state
space traversal) towards a target state that violates the specification.

The creation of the mocks from a given concrete program trace is implemented
in the function constructMocks, which is outlined in Alg. 4. The algorithm is
implicitly parameterized by a list of mock extractors Mx. A mock extractor is a

Generating Timed UI Tests from Counterexamples 11

c₁ c₂
op₁

Target State

c₃
op₂

c₄
op₃

c₅
op₄

c₆
op₅

c₇
op₆

c₈
op₇

c₉
op₈

c₁₀
op₉

c₁₁
op₁₀

c₁₂
op₁₁

go to random position username

Goto Rand

Pick Rand

Username

1.

2.
4.

3.

4.

4.

pick random 1 to 200

Fig. 3. Generation of mocks in Bastet

function that creates a mock for a Scratch block or a function of the runtime
environment based on a given trace. Section 3.2 already motivated why we need
mocks for Scratch programs, and discussed mocks with different degrees of
expressiveness. Typically, we have one mock extractor for each block that interacts
with the environment (the operating system, the runtime environment, connected
hardware components).

Figure 3 illustrates the process of generating mocks based on a given con-
crete program trace 1. leading to a target state, which violates one or more
properties ⊆ S. Three mock extractors are in place: Goto Rand produces a mock
for the Scratch block go to random position , Pick Rand produces a mock for
pick random (..) to (..) , and Username produces a mock for the block username . All
mock extractors operate by consuming the input trace from left-to-right, starting
with an empty mock 2. , and then enriching it from step-to-step. In contrast to
action extractors, mock extractors determine their behavior after the observed
block returns 3. to the calling block, then, the mock is updated based on the
concrete state found at that point in the trace 4. .

Note that each mock extractor can produce another type of mock—see
Sect. 3.2 for mock types. The mock extractor Goto Rand returns a mock with
sequential effects and operation sequences to perform: It assigns new values to
the sprite’s variables x and y in each invocation, and does not have a return
value. The extractor Username returns a mock with conditional effects: This mock
returns the value “admin” in case the condition true applies, that is, always.

5 Evaluation

We illustrate the practicality of generating and replaying (validating) UI error
witnesses for Scratch programs. In particular, we are interested if our concepts
are effective and if they contribute to a more efficient tool chain to show the
presence of bugs in UI centered programs.

5.1 Experiment Setup

Implementation We implemented the concepts presented in this paper in the
static program analysis framework Bastet [19] and in the dynamic analysis

12 Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

Fig. 4. The Brain Game example program

tool Whisker [20]. We added support to generate error witnesses from an
abstract reachability graph into Bastet, and enriched Whisker with support
for replaying these witnesses. We also defined a witness exchange format based
on JSON to exchange error witnesses between analysis tools.

Benchmarking Environment Students and teachers in educational contexts
such as schools typically do not have access to large computing clusters. For
this reason, we tried to aim for a more practical setting and conducted our
experiments on a single desktop workstation featuring an Intel(R) Core(TM)
i7-2600 processor with 3.40GHz and 32GiB of RAM (although as little as 2 to 4
GiB would have been sufficient for our case study). The machine runs Debian
GNU/Linux 10 and the current LTS version of Node.js (v14.16.0 at the time
of writing). Our additions to support Scratch error witness generation are
implemented in Bastet (version af0a20db) and its replay in Whisker (version
392712bf). We used the Node.js API provided by Puppeteer1 to control a browser
and automatically stimulate our case study Scratch programs with user input.

Case Study Scratch is backed by a large online ecosystem and community. For
example, Code Club2 is a global network of free coding clubs for 9 to 13 year-olds
with the aim of helping children develop programming skills in Scratch, among
other languages. We took inspiration from one of their Scratch projects called
“Brain Game”3 and use it as a case study.

Here, the task is to implement a game with a quiz master asking the player for
the result of five randomly chosen arithmetic computations (see Figure 4). Only
a correct answer increases the player’s score. The game ends when all questions
were answered correctly (in which case a green check mark sprite is displayed) or
when a wrong answer was given (in which case a black cross appears).

We chose Brain Game because its size and complexity are typical of the
programs developed by learners. Moreover, it exhibits randomness and requires
user interaction, which is challenging for program analysis tools.

1 https://github.com/puppeteer/puppeteer 2 https://codeclub.org/en
3 https://projects.raspberrypi.org/en/projects/brain-game-cc

https://github.com/puppeteer/puppeteer
https://codeclub.org/en
https://projects.raspberrypi.org/en/projects/brain-game-cc

Generating Timed UI Tests from Counterexamples 13

Table 1. Effectiveness, execution times in seconds rounded to two significant digits

Variant Replay Successful? Replay Time

V1 × 3.0
V2 ✓ 4.0
V3 ✓ 8.0
V4 ✓ 4.1
V5 ✓ 5.0

Afterwards, we devised four properties that constitute our notion of a correct
Brain Game implementation:

P1 The score must have been initialized with 0 before the first question is asked.
P2 The green check mark must be shown within 200ms when all questions were

answered correctly.
P3 The black cross must be shown within 200ms when a question was answered

incorrectly.
P4 The score must not decrease.

We formalized these properties as both LeILa [19] programs and Whisker tests.
The former can be fed to Bastet with the aim of checking a given program
against this specification and generating an error witness, and the latter is handed
to Whisker to verify the error witness. We implemented five erroneous variants
V1–V5, each violating one of the above properties:

V1 Violates P1: the score is not initialized at all.
V2 Violates P2: the sprite for the wrong answer is not shown when a question

was answered incorrectly.
V3 Violates P3: the sprite for the correct answer is not shown when all five

questions were answered correctly.
V4 Violates P4: the score decreases by one when an incorrect answer is given.
V5 Violates P4: the score decreases by one when an incorrect answer is given

except when it would turn negative.

5.2 Witness Replay and Validation (Effectiveness)

Effectiveness describes the ability to replay and validate the statically generated
witnesses by a dynamic analysis. To this end, we ran each of the five erroneous
Brain Game variants along with the specification in Bastet and extracted the
error witnesses. Then, we ran Whisker together with the specification and the
Scratch error witness on each program under test to investigate if the witness
generated by Bastet can be verified in Whisker.

The results are summarized in Table 1 and show that four out of five errors
were reproducible. In detail, the violations of properties P2–P4 by programs
V2–V5 were revealed via static analysis by Bastet and confirmed by dynamic
replay in Whisker. V2 and V4 both require a wrong answer for the fault to
be exposed. P3 requires five correct answers. Finally, V5 requires at least one
correct answer followed by a wrong answer.

14 Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

Table 2. Efficiency for different verification tasks, execution times in seconds rounded
to two significant digits

Variant
Error Witness Generation and Replay Random Input

Generation (estimated)Analysis Concretization Replay Combined

V1 25 0.52 3.0 28 400
V2 50 0.83 4.0 54 400
V3 1500 10 8.0 1500 7.6× 1010

V4 47 1.0 4.1 51 400
V5 210 2.1 5.0 220 500

While V2–V5 were validated successfully, the tools disagree when it comes
to the violation of property P1 by variant V1: Bastet detected a violation
but this could not be confirmed by Whisker. When first reading the score
variable, Bastet detects that it has not been initialized yet, thus deeming its
usage unsafe and reporting a violation. This requires no user interaction and the
generated replay contains no user input. When replaying the generated witness
in Whisker, however, no violation is detected. This is because uninitialized
variables in Scratch have a default value of 0 before the first program execution,
which just so happens to be the value demanded by the specification. However,
the violation could be detected by Whisker when at least one correct answer is
given (thus increasing the score to at least 1) and the game is played for a second
time, where the score would still be 1 as it is not reset from the previous game.

The failure to detect V1 highlights a limitation in our work: the current
definition of a Scratch error witness only allows for mock mappings but not for
setting the initial state of a Scratch program. While the formalism in Section 3
can be easily extended, more implementation work in Whisker is necessary to
support this. We plan to address both issues in future work.

We conclude that Scratch error witness reuse among different tools is
possible, but may reveal differences in implicit assumptions or approximations.

5.3 Sequential Tool Combination (Efficiency)

The second question we investigate is whether guiding a dynamic analysis by
tests generated from a static analysis can increase the testing efficiency. For this
purpose, we measured the combined execution times of Bastet and Whisker
to generate and replay an error witness, and compare it against the expected
average runtime of Whisker when purely unguided random input generation
were to be used. Table 2 contains the results of this experiment.

Looking at the combined times in Table 2, we see that the fault in program
variant V1 is easiest to reveal for Bastet since it requires no user interaction.
V2 and V4 entail similar effort, both require one wrong answer. V5 requires a
wrong and a correct answer and poses more challenges to Bastet, increasing
verification time by one order of magnitude. V3 requires 5 correct answers; as this
requires covering more program states, the additional analysis effort increases
the time by another order of magnitude.

Generating Timed UI Tests from Counterexamples 15

Table 3. Scaling experiment conducted on differently sized variants of program V3,
execution times in seconds rounded to two significant digits

Variant Analysis Concretization Replay Combined

V31 57 0.90 5.9 63
V32 170 2.4 5.2 170
V33 410 4.7 6.0 420
V34 810 7.0 7.0 820
V35 1500 10 8.0 1500

To contrast this with the time it would take to reveal the faults using only
random input generation inWhisker, we consider the average expected execution
time of this inherently randomized approach: The space of possible answers to
each question asked in Brain Game consists of 200 − 2 = 198 numbers. (The
two summands range between 1 and 100). In the best case scenario, Whisker
manages to generate the correct answer on the first try. In the worst case scenario,
there is no upper limit to how many tries are necessary. However, assuming that
the random number generator produces evenly distributed numbers the average
number of tries can be computed as 198/2 = 99. Moreover, from Table 2 we
can infer that a Scratch error witness replay for one question takes roughly 4
seconds. With this, the average execution time can be estimated as 4× 99 = 396
seconds for V2 and V4. Similarly, for V5 (which requires one correct and one
wrong answer), a wrong answer is given in one try on average but replay lasts
longer (5 seconds). Thus, the estimated time is 5× (99× 1) = 495 seconds.

To reveal the fault in V1, however, we would require at least one correct
answer, followed by a restart of the game. The replay time for this cannot be
extracted from the table (since we did not have user interaction) but using
a conservative estimation of 4 seconds, similar to V2 and V4, the estimated
execution time is also 396 seconds. Exposing the fault in V3 requires 5 correct
answers in a row. An average number of 995 tries with a replay time of 8 seconds
results in a total runtime of 7.6× 1010 seconds, which is more than 2400 years.

While these results suggest the combined approach is more efficient, this
depends on how Bastet’s performance scales with increasing size of the programs
to generate error witnesses for. We therefore analyze the impact of the size of
the state space in Bastet on the verification time using four alternate versions
V31, V32, V33 and V34 of V3 requiring one, two, three and four correct answers
instead of five, respectively. We use V35 synonymously for V3. Afterwards, we
generated error witnesses for each of the four new variants using Bastet. The
run times are presented in Table 3. For each additional question asked, the results
indicate that the verification time increases linearly by a factor of 2. Since error
witness generation dominates the costs, the same increase can also be seen for
the combined execution time.

Overall, the results indicate that guiding a dynamic analysis by tests generated
from a static analysis can increase the testing efficiency, and scales well with
increasing test program size.

16 Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

6 Related Work

As it can be beneficial to hide the internal models of analysis and verification tools
to support adoption by users or developers [21], the idea of producing executable
tests from counterexamples has been revisited in different contexts over time.
An early approach to produce executable tests from counterexamples [2] was
implemented for the BLAST model checker [14], and many alternative approaches
followed. For example, Rocha et al. [18] generate executable programs for coun-
terexamples produced for C programs by ESBMC [9], Muller and Ruskiewicz [17]
produce .NET executables from Spec# programs and symbolic counterexamples,
Csallner and Smaragdakis [10] produce Java tests for counterexamples generated
by ESC/Java [11], and Beyer et al. [4] presented an approach that converts veri-
fication results produced by CPAChecker [6] to executable C code. Our approach
applies similar principles, but considers interactive, graphical programs, where
verification tasks consider possible sequences of user interactions. Executable
error witnesses for interactive programs with user interactions need to mock not
only user inputs, but also other environmental dependencies. Gennari et al. [12]
described an approach that also builds mock environments, but again targets C
programs. Besides the interactive nature of UI error witnesses, a further property
that distinguishes our problem from prior work is that we are considering timed
traces. Timed counterexamples are produced, for example, by Kronos [22, 23]
or Uppaal-Tron [15]; however, we are not aware of any approaches to produce
executable tests from such counterexamples. Testification of error witnesses has
not only been proposed for producing executable tests, but also as an interchange
format for different verification tools [3]; again a main difference of our approach
is that our interchange format considers UI error witnesses rather than C func-
tion invocations. Aljazzar and Leue [1] produced interactive visualizations of
counterexamples to support debugging. By producing UI tests from UI error
witnesses we achieve a similar goal: Users can observe program executions and
the interactions with the program along described by the error witness.

7 Conclusions

This paper introduced the notion of error witnesses for programs with graphical
user interfaces—controlled by mouse and keyboard inputs, sent at particular
points in time. We illustrated our concepts and implementation in the context
of the analysis of game-like programs that were developed using visual- and
block-based programming, in Scratch. We (1) formalized the notion of UI error
witnesses, (2) described how these witnesses can be generated from the abstract
reachability graph that was constructed with an SMT-based (Satisfiability Modulo
Theories) software model checker, and (3) demonstrated their practicality for
confirming the presence of errors in a dynamic analysis.

The exchange of error witnesses between different verification tools opens up
possibilities to develop hybrid approaches that increase efficiency. Our findings
also indicate that error witnesses can be useful in order to cross-check and test
tools. Besides the technical aspects, however, there also remains the larger problem
of making UI error witnesses accessible and useful for learning programmers.

Generating Timed UI Tests from Counterexamples 17

References

1. Aljazzar, H., Leue, S.: Debugging of dependability models using interactive vi-
sualization of counterexamples. In: QEST. pp. 189–198. IEEE Computer Society
(2008)

2. Beyer, D., Chlipala, A., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: ICSE. pp. 326–335. IEEE Computer Society (2004)

3. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: ESEC/SIGSOFT FSE. pp.
721–733. ACM (2015)

4. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses -
execution-based validation of verification results. In: TAP@STAF. Lecture Notes in
Computer Science, vol. 10889, pp. 3–23. Springer (2018)

5. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: CAV.
Lecture Notes in Computer Science, vol. 4590, pp. 504–518. Springer (2007)

6. Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable software verifica-
tion. CoRR abs/0902.0019 (2009)

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV. Lecture Notes in Computer Science, vol. 1855, pp.
154–169. Springer (2000)

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

9. Cordeiro, L., Fischer, B., Marques-Silva, J.: Smt-based bounded model checking
for embedded ansi-c software. IEEE Transactions on Software Engineering 38(4),
957–974 (2011)

10. Csallner, C., Smaragdakis, Y.: Check’n’crash: Combining static checking and testing.
In: Proceedings of the 27th international conference on Software engineering. pp.
422–431 (2005)

11. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implementation. pp. 234–245
(2002)

12. Gennari, J., Gurfinkel, A., Kahsai, T., Navas, J.A., Schwartz, E.J.: Executable
counterexamples in software model checking. In: Working Conference on Verified
Software: Theories, Tools, and Experiments. pp. 17–37. Springer (2018)

13. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV.
Lecture Notes in Computer Science, vol. 1254, pp. 72–83. Springer (1997)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceed-
ings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 58–70 (2002)

15. Larsen, K.G., Mikucionis, M., Nielsen, B., Skou, A.: Testing real-time embedded
software using UPPAAL-TRON: an industrial case study. In: EMSOFT. pp. 299–306.
ACM (2005)

16. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The scratch
programming language and environment. ACM Trans. Comput. Educ. 10(4), 16:1–
16:15 (2010)

17. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification
attempts. In: International Symposium on Formal Methods. pp. 73–87. Springer
(2011)

18 Dominik Diner, Gordon Fraser, Sebastian Schweikl, and Andreas Stahlbauer

18. Rocha, H., Barreto, R., Cordeiro, L., Neto, A.D.: Understanding programming bugs
in ansi-c software using bounded model checking counter-examples. In: International
Conference on Integrated Formal Methods. pp. 128–142. Springer (2012)

19. Stahlbauer, A., Frädrich, C., Fraser, G.: Verified from scratch: Program analysis
for learners’ programs. In: ASE. IEEE (2020)

20. Stahlbauer, A., Kreis, M., Fraser, G.: Testing scratch programs automatically. In:
ESEC/SIGSOFT FSE. pp. 165–175. ACM (2019)

21. Visser, W., Dwyer, M.B., Whalen, M.W.: The hidden models of model checking.
Software and Systems Modeling 11(4), 541–555 (2012)

22. Yovine, S.: Model checking timed automata. In: European Educational Forum:
School on Embedded Systems. Lecture Notes in Computer Science, vol. 1494, pp.
114–152. Springer (1996)

23. Yovine, S.: KRONOS: A verification tool for real-time systems. Int. J. Softw. Tools
Technol. Transf. 1(1-2), 123–133 (1997)

	Generating Timed UI Tests from Counterexamples

