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ABSTRACT

Block-based programming languages like Scratch support learn-
ers by providing high-level constructs that hide details and by
preventing syntactically incorrect programs. Questions neverthe-
less frequently arise: Is this program satisfying the given task? Why
is my program not working? To support learners and educators, au-
tomated program analysis is needed for answering such questions.
While adapting existing analyses to process blocks instead of textual
statements is straightforward, the domain of programs controlled
by block-based languages like Scratch is very different from tradi-
tional programs: In Scratch multiple actors, represented as highly
concurrent programs, interact on a graphical stage, controlled by
user inputs, and while the block-based program statements look
playful, they hide complex mathematical operations that determine
visual aspects and movement. Analyzing such programs is further
hampered by the absence of clearly defined semantics, often re-
sulting from ad-hoc decisions made by the implementers of the
programming environment. To enable program analysis, we define
the semantics of Scratch using an intermediate language. Based
on this intermediate language, we implement the Bastet program
analysis framework for Scratch programs, using concepts from
abstract interpretation and software model checking. Like Scratch,
Bastet is based on Web technologies, written in TypeScript, and
can be executed using NodeJS or even directly in a browser. Evalu-
ation on 279 programs written by children suggests that Bastet
offers a practical solution for analysis of Scratch programs, thus
enabling applications such as automated hint generation, automated
evaluation of learner progress, or automated grading.
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1 INTRODUCTION

Block-based programming is increasingly popular for introducing
learners to programming [75] as well as for simplifying the chal-
lenges of programming for domain experts with limited program-
ming skills [74]. In block-based programming languages, program
statements are represented visually as blocks which users drag
and drop from a toolbox of available commands to visually arrange
programs. This paradigm is implemented bymany popular program-
ming environments such as, for example, Alice [23], Snap [35],
PencilCode [9], or 28 other drag-and-drop programming environ-
ments surveyed recently [28]. Block-based programming increas-
ingly has applications outside of education, for example, in domains
such as robotics [72, 74] or internet-of-things [58]. The recent suc-
cess of the block-based approach, however, can be attributed to a
large extent to the popularity of Scratch [46]. At the time of this
writing, the popular Scratch programming environment had more
than 54 million registered users who have publicly shared more
than 53 million programs1 and written more programs not shared.

Although block-based programming languages like Scratch
are successful at making programming easier, they do not simplify
program analysis: Even though at first glimpse Scratch programs
look small and easy, they tend to consist of many highly concurrent
scripts, which are composed of blocks that hide complex mathemat-
ical functions that control the program’s visual representation. To
lower the entry barriers and to foster widespread adoption, most
block-based programming environments are designed as Web ap-
plications, and the interpreters for these blocks tend to be built
into the Web applications, and are often implemented in an ad-hoc
way without clearly defined semantics. Since Scratch programs
do not have an intermediate language that they are translated to,
statically analyzing a Scratch program with its full semantics
would therefore require to conduct an analysis of the Scratch
VM together with the Scratch program to be analyzed loaded
into it. Although challenging, the demand for automated program
analysis has never been higher, for example for automated hint
generation [57], supporting program improvement [71], evaluating
learner progress [52], or automated grading [73].

In this paper we introduce Bastet2, a general program analysis
framework for Scratch 3. Figure 1 illustrates the overall workflow
of Bastet using a primary school programming task, in which the
aim is to make the circus director move to the monkey sprite. To
analyze Scratch programs, Bastet uses a textual intermediate
language (LeILa, described in Section 3). Bastet provides a library
describing the functionality of all Scratch-blocks in LeILa 1○. As
an example, the LeILa implementation of the move (n) steps block
is shown. The Scratch program itself is translated to LeILa 2○,
and the same intermediate language is used for formal specifica-
tion 3○. The program is then interpreted using the semantics of
1 https://scratch.mit.edu/statistics/ 2 Bastet is the ancient Egyptian goddess of cats;
the Scratch logo is a cat.
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Abstract Reachability Graph

actor Stage is ScratchStage begin
endactor Monkey is ScratchSprite begin
end

Program (LeILa)

actor Director is ScratchSprite begin
....
script on startup do begin
repeat forever begin
pointTowards(locate "Monkey")
moveSteps(1)

end
end

end

move steps

Block Library (Scratch)

define atomic moveSteps (n: integer) begin
declare nf as float
define nf as cast n to float

declare radians as float
define radians as degToRad(90.0

- (cast direction to float))

declare dx as float
declare dy as float
define dx as nf * cos(radians)
define dy as nf * sin(radians)

define x as x + (cast dx to integer)
define y as y + (cast dy to integer)

end

Block Library (LeILa)

when clicked

forever

point towards Monkey

move 1 steps

Program (Scratch)

St
ag
e
M
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ke
yDi
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ct
or

Specification (LeILa)

Task (Control Transition Systems)

actor DirectorObserver is Observer begin
....
script on statement finished do begin
....
if ... then begin
failure()

end
end

end

3 Script Group "DirectorObserver"

Script Group "Stage"

Script Group "Monkey"

Script Group "Director"

pointTowards(a: actor)

moveSteps(n: integer)

on startup

pointTowards(
locate "Monkey")

moveSteps(1)

1

2

4

5

Figure 1: Bastet Overview: Scratch programs are translated to the LeILa intermediate language, which Bastet analyzes

using concepts from abstract interpretation and software model checking with respect to a LeILa specification.

LeILa 4○ (Section 3.3), thus enabling the application of various pro-
gram analysis configurations 5○ using concepts from abstract inter-
pretation and software model checking (Section 4). Like Scratch,
Bastet itself is based on Web technologies and written in Type-
Script, and can be executed in NodeJS or even directly in a Web
browser. In detail, the contributions of this paper are as follows:

(1) We define the LeILa intermediate language for Scratch
programs and their formal requirements specification (Sec-
tion 3). We discuss the central parts of its semantics, as well
as approximations to handle the complexity of Scratch.

(2) We introduce the Bastet program analysis framework (Sec-
tion 4) and release it as an open source project.

(3) We empirically demonstrate that Bastet is practically appli-
cable to Scratch programs written by children (Section 5).

A pilot study of 279 children’s implementations of four educa-
tional programs shows that the translation of Scratch programs
into LeILa and the interpretation with Bastet maintains the pro-
gram semantics. This demonstrates that Bastet provides the foun-
dations for many different types of program analysis on Scratch.
By releasing Bastet as open source, we hope to inspire many future
automated analyses and support techniques, thus helping learners
as well as their teachers or automated tutoring systems.

2 BACKGROUND

Before we present our framework, we introduce relevant back-
ground based on existing work [13, 25, 65]. We use upper case
letters A,B, . . . ,Z or letters with a hat â, B̂ for sets, lower case let-
ters a,b, . . . , z for set elements, lists and sequence variables are indi-
cated by adding a bar a,A, the set of all words over an alphabetA is
denoted by A∗. Sets are enclosed in curly brackets {a1, . . .}, lists in
angle brackets ⟨a1, . . .⟩, and tuples in round brackets (a1, . . . ,an ).

Scratch. Scratch programs [47] are developed visually and block-
based in the corresponding development environment [47]. As
in other block-oriented languages, the grammar of Scratch is
defined implicitly by allowing or preventing (Scratch) blocks to
be combined. A Scratch program App is composed of a set of
visual entities consisting of the sprites and the stage—the program
in Fig. 1 is composed of the sprites Director andMonkey, and the
stage Stage. The visual entities are rendered on a canvas; each
entity is rendered on a separate layer [65]. One visual entity is
composed of a set of scripts, a set of custom blocks, and sound and
image resources. Each script handles an event, and is composed
of a set of blocks to execute. Scratch programs are controlled by
events, typically triggered by mouse or keyboard inputs. A Scratch
program is executed in the Scratch virtual machine.

Concrete States and Behaviours. The semantics [[App]] of a Scratch
program App is defined [65] by the set of concrete execution traces
it exhibits, that is, [[App]] ⊆ C∞. The set of all possible concrete

execution traces C∞ = Cω ∪C∗ consists of the set of finite tracesC∗
and the set of infinite traces Cω . One program trace c = ⟨c0, . . .⟩ ∈
C∞ is a sequence of concrete states and always starts in the initial
concrete state c0 of a program. A concrete state c ∈ C (configuration)
of a Scratch program [65] is a list c = ⟨p1, . . . ,pn⟩ of concrete
process states pi : X → V . Each concrete process state pi is a
mapping from a data location x ∈ X (a variable) to a data value v ∈
V . We call an instance of a Scratch script a process. A concrete
process state describes the state of a process λ ∈ Λ at one point
in time; the set of all processes is denoted by Λ. Processes are
organized into process groups that correspond to visual entities of a
Scratch program—we also use the term actor for such an entity.

The set of data values is typed, that is, it is the union V =
Vint ∪Vfloat ∪Vstring ∪Vlist of data values of different types, a list
value is a sequencev ∈ V

list
of data values. A set of special data loca-

tions X
ctrl
= {pid, pgroup, pc, pstate, pwaitfor, ptime} ⊂ X stores
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information about the computation (control) state of the processes
and the environment: pid is the process identifier, pgroup identifies
the process group, pc is the program counter which denotes the posi-
tion in a script to execute, pstate ∈ {Wait,Running, Yield,Done} is
the computation state of the process, pwaitfor is the set of processes
the process waits for, ptime denotes the time that has elapsed since
the application has been started. Other typical elements in the setX
are variables that describe the sprite attributes such as position,
size, and the orientation of a sprite—{x, y, size, direction} ⊂ X .

3 INTERMEDIATE LANGUAGE

Analyzing Scratch programs statically is hard since it would re-
quire to analyze the full Scratch VM along with the Scratch
program, because the VM defines the functionality of blocks: the
semantics of Scratch are implemented in the Scratch VM3. The
semantics of Scratch blocks is defined informally on the Scratch
wiki4—a workaround5, which defines how to mimic a block‘s se-
mantics without using that block, is given for each of the blocks.

We reverse-engineered the semantics of Scratch and its blocks
and describe it based on our own intermediate language LeILa (LE-
arners Intermediate LAnguage), similar to the use of Promela in
the Spin model checker for C programs [40]. We replicate the func-
tionality of the blocks available in Scratch in a Scratch block

library written in LeILa. Only control structures, data types, ex-
pressions, and statements that are relevant to mimic the behavior
of Scratch in this library are part of the LeILa language definition.

3.1 Language Features

LeILa is designed to aid in program analysis, and also to be easily
readable for people that are familiar with block-based programming
languages like Scratch—also, because LeILa is intended to be used
as a specification language by teachers. LeILa allows for inheri-
tance and event-driven programming, and has distinct keywords
for program analysis and verification. Data is exchanged either via
message passing or via global memory access.

Syntax. The syntax of LeILa is oriented on languages [43] that
are used to introduce people to programming early, for example,
Pascal [76, 77],Grail [48], or Logo [29]—and influenced the design
of Scratch. Evidence shows [67] that these languages use syntactic
elements that are often more intuitive for novices, compared to
those in widely used general purpose languages. Figure 2 shows
central parts of LeILa’s grammar. The full ANTLR [54] grammar is
shipped with our framework. An example for a program written in
LeILa can be found in Fig. 1.

Actors and Roles. We use the term actor—corresponding to the
keyword actor—to denote an entity that is visible to the user or
the environment—also for interaction using inputs or by passing
messages—that provides functionality to act in a particular role.
LeILa supports inheritance by providing the keyword is and uses
the keyword role to define abstract actors, that is, collections of
pre-defined methods and attributes (data) that can be instantiated
in an actor. We consider this notion of actors and roles to be closer
to the intuition that is promoted by Scratch. Examples for typical
roles to realize Scratch programs are Sprite and Stage.
3 github.com/LLK/scratch-vm 4 en.scratch-wiki.info
5 en.scratch-wiki.info/wiki/List_of_Block_Workarounds

⟨program⟩ ::= program ⟨id ⟩ ⟨group⟩*
⟨group⟩ ::= ( actor | role ) ⟨id ⟩ [ is ⟨id ⟩ ( , ⟨id ⟩ )* ] begin ⟨comps⟩ end

⟨comps⟩ ::= ⟨ressource⟩* ⟨attribute⟩* ⟨method ⟩* ⟨script ⟩*
⟨ressource⟩ ::= ( image | sound ) ⟨id ⟩ ⟨uri⟩
⟨attribute⟩ ::= declare ⟨id ⟩ as ⟨type⟩

⟨type⟩ ::= integer | float | boolean | string | list of ⟨type⟩ | actor
⟨script ⟩ ::= script [⟨id ⟩] on ⟨event ⟩ do [ restart ] ⟨stmts⟩

⟨method ⟩ ::= define [ atomic ] ⟨id ⟩ ⟨params⟩ ⟨stmts⟩

[ returns ⟨id ⟩ : ⟨type⟩]
| extern ⟨id ⟩ ⟨params⟩ ⟨stmts⟩ [ returns ⟨type⟩]

⟨params⟩ ::= ( ( ⟨param⟩ ( , ⟨param⟩ )* | ϵ ) )

⟨param⟩ ::= ⟨id ⟩ : ⟨type⟩

⟨stmts⟩ ::= begin ⟨stmt ⟩* end

⟨event ⟩ ::= bootstrap
| startup
| started as clone
| message ⟨string⟩ [ in ⟨string⟩]
| ⟨specEvent ⟩

⟨specEvent ⟩ ::= bootstrap finished | statement finished

Figure 2: A fraction of the LeILa grammar. The full gram-

mar is defined based on ANTLR.

Each Scratch sprite, each clone of a sprite (corresponding to the
fork of a process), and the stage correspond to one actor; another
actor is added for communicating with the environment (mouse and
keyboard inputs). On the technical level, an actor is formed by the
list of processes that are executed concurrently—dual to a process
group in related work [65]. Note that our notion of actor is slightly
different from the notion used to describe actor models [2, 45]: In
that work, an actor is not composed of several processes, that is,
an actor corresponds to a single process only.

Verification Additions. We added particular language features to
LeILa that aid in analysis and verification, and allow for realizing
different approximations of a programs behavior—see also Sect. 3.5.
The keyword assume can be used to specify invariants that can
be assumed to always hold at particular points in a program. In
particular, this is relevant for restricting possible values of variables
that have been initialized non-deterministically. Other features help
to provide the formal specification of desired behaviors of a program
as LeILa code (on statement finished, on bootstrap finished)—see
Sect. 3.4, and help to determine which code fragments to consider
as one atomic (keyword atomic) program operation (which must
not be preempted by the scheduler; the specification must not be
checked in-between; all non-control-flow blocks of Scratch are
modeled as atomic methods).

3.2 Control Transition System

After translating a Scratch project to LeILa, we use its abstract
syntax tree (AST) and translate it into collections of control tran-
sition systems—the result is a list of actor definitions with a con-
trol flow graph for each script and each method the actor defines.
This is the foundation to define the operational semantics of LeILa
programs—and their Scratch counterparts. The control flow se-
mantics of LeILa are implemented in the process of translating
LeILa programs into lists of actor definitions with their correspond-
ing control transition relations.

github.com/LLK/scratch-vm
en.scratch-wiki.info
en.scratch-wiki.info/wiki/List_of_Block_Workarounds


ASE ’20, September 21–25, 2020, Virtual Event, Australia Andreas Stahlbauer, Christoph Frädrich, and Gordon Fraser

LeILa Program. We formally define a LeILa program as a lista ∈ A∗
of actor definitions. One actor definition a = (s,m̂,h) ∈ a is a tuple
consisting of a list s of scripts, a set m̂ of method definitions, and
a concern h. Each actor contributes to a concern h ∈ H , where
H denotes the set of all concerns. For this work, we restrict the
set of concerns to H = {Prog, Spec, Env}, that is, it can be either
the program concern Prog, the specification concern Spec, or the en-
vironment concern Env. The analysis procedure treats actors that are
instantiated from actor definitions with the specification concern
in a special way—see Sec. 3.4.

Methods and Scripts. Both, methods and scripts, are defined based
on transition systems. A control transition system γ = (L, l0, Lx ,G)
consists of a set of control locations L, an entry location l0 ∈ L, a set of
exit locations Lx ⊆ L, and a set of control transitionsG ⊆ L×Op×L.
One control transition (l1, op, l2) ∈ G has a predecessor location l1, a
program operation to execute op, and a successor location l2, that is,
location l2 is syntactically reachable via location l1 after conducting
program operation op ∈ Op.

Amethodm = (id, ρ, rt,γ ) ∈ m̂ is defined by a tuple consisting of
an identifier id , a list of parameters ρ ∈ X ∗, a result variable rt ∈ X ,
and a transition relation γ . A script s = (w, r ,γ ) ∈ s is defined by a
tuple consisting of an eventw ∈ S × S × X ∗, a flag r ∈ B (keyword
restart), which indicates whether the execution of the script should
be re-started from its transition relations entry location in case
the event is triggered, and the transition relation γ . The eventw =
(µ,κ, x) consists of a message identifier string µ, a string κ that
specifies the message channel, and a list of arguments x that is
passed to the script if the event is triggered—the set S denotes all
possible strings expressible in LeILa.

We assume that the inheritance relation of actor definitions is
dissolved upfront in a preprocessing step—for example, all methods
of the ancestor actors (or roles) become methods of the given actor
definition itself. Methods are used to define the behavior of the
blocks that can be composed visually to a Scratch program. A
script can invoke all methods defined for the actor.

Program Operations. The set of atomic program operations Op con-
sists of operations of various types, which can manipulate or check
the set of data locations X (variables): For example, assume oper-

ations—such as assume a > b, constructed from if a > b then—are
guarding statements [27] and express conditions under that the
successor location is reachable, assign operations—such as define
x as 42—assign new values to data locations. The epsilon opera-

tion ϵ ∈ Op is a special operation that does neither affect the state
space nor the behavior of the program. The termination opera-

tion halt ∈ Op signals the termination of the program. The set
of typed data locations X is the union of the set of integer data
locations Xint , float locations Xfloat

, string locations Xstring , and list
locations X

list
.

3.3 Concrete Semantics

So far, we have described the formalization of a LeILa program as
a list of actor definitions a ∈ A∗ and their scripts’ and methods’
control transition relations, now, we are interested in its semantic
denotation [[a]] ⊆ C∞: Which execution traces are feasible for a
given program? The operations on the control transitions between

the control locations give rise to the actual behaviors and states
of a LeILa program—the operational semantics [37, 50, 55]. In the
following, we describe an important subset of LeILa’s semantics; a
document with the full formal semantics is left for future work.

Initialization. The execution of a LeILa program a ∈ A∗ is boot-
strapped by a special bootstrapping actor, which is instantiated from
the actor definition a

boot
∈ a and orchestrates the initialization pro-

cess. The bootstrapping actor is the first active actor in the system.
It conducts the following three steps: The bootstrapper first triggers
the bootstrap event using the statement broadcast "BOOTSTRAP" to
"SYSTEM" and wait, which activates the on bootstrap event handler
scripts. After all actors have handled this event, it activates all han-
dlers for the event bootstrap finished, after which the system is
considered initialized and all scripts that handle the event startup
are activated—corresponding to Scratch’s green flag event. Details
on LeILa’s event handling are explained later in this section.

A LeILa program is bootstrapped from the initial concrete state
c0 = ⟨p1, . . . ,pn⟩, which is a list of concrete process states. Note
that one actor (see Sect. 3 for our notion of actors) is formed by
a set of processes—also known [65] as a process group. Only the
process that belongs to the bootstrapping actor is in the computa-
tion state Running, that is, supposed to make state transitions. In
detail, the initial concrete state is defined as follows—the vertical
bar corresponds to a set-theoretic “such that” assuming that the
lists a and sa are iterated from left to right:

c0 = ⟨{(pid, s), (pgroup,a), (pc, l0), (pstate, r ), (pwaitfor, ⟨⟩),

(ptime, 0)} | γs = (·, l0, ·, ·) ∧ s = (·, ·,γs ) ∈ sa
∧ a = (sa, ·, ·) ∈ a ∧ r = Running if a = a

boot
else Wait⟩.

The initial concrete state c0 is the first element in all concrete
execution traces of a given LeILa program a. Note that variables
declared by the user are added to the concrete state as soon as a
corresponding variable declaration statement was executed.

Step. After we have defined the initial concrete state of a LeILa
program, we define the prefix-closed [1] set of sequences of concrete
states that are considered feasible for a given program. The concrete
state transition relation→⊆ C ×C of a given LeILa program defines
the set of traces that are considered feasible. Given a concrete
state ci , a concrete transition ci → ci+1 exists if the list of processes
in ci that are in the computation state pstate = Running and the
control transitions д̂ ⊂ L×Op×L they conduct lead to the concrete
state ci+1 = ⟨p′i , . . . ,p

′
n⟩ by interpreting the program operations of

the control transitions д̂. A trace c = ⟨c0, . . .⟩ ∈ C∞ is feasible if for
all succeeding states (ci , ci+1) ∈ c holds that (ci , ci+1) ∈→. In this
work, we restrict the number of processes that can concurrently
conduct a state transition to one at a point in time, and realize an
interleaving concurrency.

Given a concrete state c ∈ C and a concrete process state p ∈ P
of a process λ ∈ Λ to run, a program operation op ∈ Op that leads to
a successor control location l ∈ L is always interpreted in context
of the process λ ∈ Λ and the actor a (process group) it belongs
to. We therefore define the concrete successor function csucc :
C×(P×Op×L) → C such that a call csucc(c,p, op, l) takes a concrete
predecessor state c , a process p, to interpret the operation op in,
to get to the successor location l . This call can also be written
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as csuccp (c, op, l). The function implements the actual semantics of
given program operations.

We now provide a more formal definition of the concrete tran-
sition relation using the functions step : C × P∗ → C and step :
C×P → C . The function step takes a concrete state and a list of con-
crete process states as input and computes one concrete successor
state for which all processes that were in the state Running con-
ducted their state transitions. The processes in the stateRunning are
processed deterministically from left to right. We define (c, c ′) ∈→
if and only if step(c, c) = c ′ ∧ c ′ , c , where

step(c,p = ⟨p1, . . .⟩) =

{
c if |p | = 0
step(step(c,p1), ⟨p2, . . .⟩) if |p | > 0

The actual interpretation of the control transitions for a particular
concrete process states to reach a successor location l ′ is initiated
by the function step:

step(c,p = {(pc, l), (pstate, r ), . . .})

=

{
c if r , Running

c ′ ∈
⋃
(l ,op,l ′)∈G csuccp (c, op, l

′) otherwise

Note that both step and step are deterministic functions since they
operate on concrete states, for which none of the data locations has
non-deterministic values.

Scheduling. LeILa programs have an inherent notion of parallelism.
A scheduler determines the next process to run—the process state
to put in the Running state—after a state transition has been con-
ducted. For LeILa, we propose a round robin scheduling strategy in
combination with a sequentialization: Exactly one process conducts
a state transition at one point in time; steps of different processes
are interleaved. This corresponds to the Green threading [68] strat-
egy that is implemented in the Scratch VM. This important design
choice reduces the number of interleavings to consider by a model
checker considerably, since there is always only one process (thread)
to conduct the next state transition.

The round robin scheduling is paused as long as a process per-
forms computation in a code block marked with the keyword
atomic. This is important to mimic the scheduling of processes
in environments like the Scratch VM as well as possible. For ex-
ample, the operations that implement the move (n) steps Scratch
block (see Fig. 1) must not be interrupted by other computations
and are handled as one atomic unit.

Another important deviation of round robin scheduling is made
for observer processeswith statement finished event handlers. These
types of processes implement monitors that observe whether or
not the specification is still satisfied, and signal a violation if not.
These monitoring handler processes become activated each time a
non-monitoring process finished an atomic state transition.

Event Handling. Scratch programs are driven by events, and so
are LeILa programs. Most events boil down to handle incoming
messages. For example, the event on bootstrap translates to on
message "BOOTSTRAP" to "SYSTEM", and on startup translates to on
message "STARTUP" to "SYSTEM". Messages can be explicitly qualified
with a channel name, for example, the message "BROADCAST" to "

SYSTEM" is qualified with the channel name "SYSTEM". In case no
channel is provided, we use the default channel "USER".

actor Th ingObserve r i s Observer begin
define atomic c h e c kB eh a v i o r S a t i s f i e d ( ) begin

. . .
i f . . . then begin

f a i l u r e ( "The thing must not ..." )
end

end
s c r i p t on bootstrap f in ished do begin

. . .
c h e c kB eh a v i o r S a t i s f i e d ( )

end
s c r i p t on statement f in ished do begin

c h e c kB eh a v i o r S a t i s f i e d ( )
end

end

Figure 3: Formal specification skeleton based on LeILa

After handling a broadcast statement, all processes that corre-
spond to scripts which are handlers for the received message are
activated in the computation mode Yield, in case a script has the
flag restart , the process’s program counter variable pc is set to the
initial control location of the script. A broadcast with the postfix
and wait pauses the sending process (computation state Wait) as
long as there exists an active process that was triggered by sending
the given message and has not reached an exit location of its script.

3.4 Specifying Programs

One goal of our work is to enable teachers, students, and others
in writing formal programming task specifications. We propose
to use separate actors with the specification concern to monitor
the state space and the program’s behavior—as also proposed in
related work [65]. We extended LeILa with constructs that aid in
the specification task: Event handlers for bootstrap finished are
triggered after all actors have been initialized; these can be used to
check the base condition of the specification. All event handlers for
statement finished are triggered each time the program under anal-
ysis conducts a transfer—for an actor that belongs to the program
concern. This scheduling corresponds to the activation of observer
processes in related work [65]. Handlers for this event ensure that
the specification is satisfied, and a failure is signaled in case of a
specification violation using a particular fail statement. Figure 3
shows a specification skeleton written in LeILa.

touching(cat, ball)

says("Caught")

> 1.2 sERROR

Figure 4: Timed

automaton

Typical Scratch program specifications
contain both safety and bounded liveness
properties. The liveness properties are typ-
ically time-bound, that is, expressible in
some real-time temporal logic such as
MITL [56]. The timed automaton in Fig. 4
illustrates an example property that is also
expressible in LeILa.

3.5 Approximations

Tomake reasoning about Scratch programs feasible, we use several
approximations of possible states and behaviors. These are needed
to deal with undecidable theories, dependency on the real time
(and the execution speeds of machines), the state-space explosion
problem that can arise due to non-deterministic behavior (e.g., from
the non-deterministic scheduling of processes), and heavily data-
dependent properties (e.g., the pixels shown on a screen).
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Some of these approximations already happen while translating
from Scratch to LeILa programs. We believe that the semantic
differences between these languages are not relevant for typical
learners tasks such that reasoning results about programs in the
intermediate language can be transferred to the original Scratch
programs—we evaluate this in Sect. 5.

Time. Time is important for Scratch programs and their specifi-
cations. The liveness properties that are relevant in practice can
often be time bound. LeILa programs have access to the time that
has elapsed since the program has been started. We approximate
the time that expires while executing a Scratch program—or a
corresponding LeILa program—by mapping a time interval to each
operation in a program’s control flow.

We use a time profile T : Op → (N∞ × N∞), with N∞ =
N ∪ {0,∞}, to map an interval [min,max] of microseconds to each
program operation op ∈ Op, and use this interval to update a global
time variable globalTime (an example is given later) that models the
time that has expired since the program under analysis was started.
This allows analyses to also check real-time properties formulated
based on some real-time temporal logic (such as MITL). The lifting
operation (·) ↱T : A∗ → A∗ transforms a given LeILa program a

to a new LeILa program aT = a ↱T by taking a time profile T into
account. That is, program analysis techniques that are not time
aware are applicable. Such reductions were done in the past [6, 64]
by translating timed automata—or some form of real-time temporal
logic in general—to predicate logic.

Technically, we add control transitions after each control transi-
tion (l, op, l ′) of the original program to update the time based on
the interval [min,max] ∈ T (op). Only actors of the program con-
cern Prog are lifted. The added transitions are labeled with program
operations that correspond to following three LeILa statements:

declare opTime as integer
assume opTime >= #min and opTime <= #max
define g l oba lT ime as g l oba lT ime + opTime

These statements adjust the time that is assumed to be expired
after executing the operation op—with #min and #max replaced by
corresponding constants. Note that we take advantage of the fact
that the variable opTime has a non-deterministic value, which we
then restrict using the assume statement in its range. We add the
control transitions only if an operation’s time interval is not empty,
that is if max−min ≤ 0.

By convention, we assume that the last concrete state of each
finite program trace in [[a]] ⊆ C∞ is entered by the terminating

operationwith the statement halt. We assign the time interval [0,∞]
to these termination calls—which states that the program is either
restarted immediately, stays terminated forever, or is restarted at
some time in-between.

Scheduling. Scratch has an inherent notion of concurrency. A
scheduling component determines the ordering of the Scratch
threads to run, leading to an interleaved concurrency. We do not
implement all details of Scratch’s scheduler (e.g., particular as-
pects of how the scheduler deals with loops) and rely purely on
LeILa’s deterministic round-robin scheduling. The differences in
our scheduling strategy can influence the soundness of statements

Figure 5: Approximations of the shape of Scratch sprites

define atomic mathSin ( i npu t : f l o a t ) begin
i f i npu t >= 0 . 0 and i npu t < 0 . 1 5 7 1 then begin

assume r e s u l t > 0 . 0
assume r e s u l t <= 0 . 1 5 6 5

end e l s e i f i npu t >= 0 . 1 5 7 1 and i npu t < 0 . 3 1 4 2 then
assume r e s u l t > 0 . 1 5 6 5
assume r e s u l t <= 0 . 3 0 9 1
. . .

Figure 6: Excerpt from the sine approximation function

we make about Scratch programs. The scheduler that is imple-
mented in the Scratch VM can lead to non-deterministic schedules
in some circumstances—specifically in case one round in the list of
processes (threads) takes longer than (1000/60) ∗ 0.75 = 12.5ms,
after which the list is processed from its first element.

Resources. A central building block of Scratch applications are
images and sounds. Images are used as “backdrops” for the stage
and “costumes” for the sprites. Attributes of images and their rela-
tionship on a canvas are important properties of Scratch programs
to reason about. For example, certain behavior might be only visible
if the pixels of a sprite are touching the mouse pointer, or if the
pixels of two sprites overlap on the canvas.

Instead of considering every single pixel of every image for
reasoning, we approximate the shape of images. While there are dif-
ferent ways to do this, we use one rectangle per shape as an approx-
imation and implement this approximation for the Scratch blocks
touching (mouse pointer) , touching (edge) , and touching (Monkey) in
our block library written in LeILa.

Note that there are different ways to approximate the shape of
sprites. See Fig. 5 for some shape approximations (single rectangles,
circles, multiple rectangles): A perfect approximation of the sprites’
shapes would indicate that the two given sprites do not overlap,
while the presented approximations cannot detect this.

Mathematical Functions. A fundamental problem that limits the
applicability of elaborated analysis techniques like model checking
is the undecidability of some mathematical logics such as the first-
order theories of natural and rational number multiplication.

To reduce the mathematical complexity of some of the analysis
tasks in the context of Scratch projects, we overapproximated sev-
eral of the mathematical methods and provide these approximations
in the LeILa library as code. In particular we applied intervaliza-
tion [51] in some of the methods. By putting these approximations
into the libraries the actual decision procedures in our analysis
framework can be more generic and do not have to provide support
for functions like sine or cosine. Figure 6 shows an excerpt of the
sine lookup function which takes a value between 0 and 2π and
returns an interval that approximates the sine value.
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4 ANALYSIS FRAMEWORK

A central contribution of this work is Bastet, a framework for auto-
matically analyzing and verifying Scratch programs translated to
LeILa. The long-term vision of Bastet is to provide the foundations
for implementing different program analysis techniques that aid
in analyzing programs written in visual, block-oriented program-
ming languages. In particular, we aim at providing the foundations
for automatic test generation [10, 30], data-flow analysis [66], un-
bounded model checking based on predicate abstraction [11], and
concolic execution [63]. We focus on describing the framework
components for implementing a software model checker to ver-
ify safety properties and bounded liveness properties. This section
therefore assumes knowledge on software model checking; we refer
to the literature for background information [12, 41].

4.1 Overall Architecture

The overall workflow of Bastet for model checking Scratch pro-
grams consists of three phases: (1) In the first phase, task models
are generated. A verification task consists of a specification and
the given program, which is parsed and translated from Scratch
to LeILa. Specification and program are both transformed into
the set of task actors. (2) In the second phase, the actual program
analysis is conducted, which constructs, for example, an abstract
reachability graph. More generally, for this phase Bastet builds
on concepts from abstract interpretation [24, 25, 34], static anal-
ysis [59], software model checking [7, 18, 20], and configurable
program analysis [13]. The program analysis consists of a set of
analysis algorithms (Section 4.3), where one algorithm can wrap

another one as illustrated in Fig. 7. Analysis algorithms act on an
abstract representation of a program’s state space and its behaviors
provided by a set of state interpreters (Section 4.4). (3) The last phase
produces output artifacts, for example, error witnesses, test suites,
or correctness proofs if a suitable analysis configuration is used.
Since we aim at running program analyses while programming
in a Web browser, we have taken a novel route and built Bastet
entirely on Web technologies: The framework is written in Type-
Script, attached SMT solvers (Z3) are compiled to WebAssembly,
and the framework can run in NodeJs or on top of a browser.

4.2 Abstract Domain

To make statements about properties of programs, Bastet relies
on abstraction, which is central for constructing finite abstrac-
tions of a programs’ state space [13, 22, 25], and to cope with the
undecidability of most program analysis problems [60]. The ab-

stract domain [13] D = ( ÝC, ÝE, [[·]], ⟨⟨·⟩⟩) provides the central oper-
ations for abstraction, and for mapping between abstract states
and sets of concrete states. The set of abstract states E is arranged
in a lattice ÝE = (E, ⊑,⊓,⊔,⊤,⊥) [15] and is partially ordered by
its inclusion relation ⊑: E × E → B. The meet ⊓ : E × E → E,
join ⊔ : E × E → E, top element ⊤, and the bottom element ⊥ are
defined as usual. The concretization function [[·]] : E → 2C maps
an abstract state ∈ E to a set of concrete states ⊆ C , for example,
[[⊤]] = C and [[⊥]] = ∅. The abstraction function ⟨⟨·⟩⟩ : 2C → E
maps a set of concrete states to an abstract state. Widening is pro-
vided by an abstract domain with widening Dπ = (D,Π, ⟨⟨·⟩⟩π ),
which defines an abstraction with widening ⟨⟨·⟩⟩π : E → E based on

Multi Property

Feasibility

Reachability

Graph

Control

SSA

Data

Algorithms
State Interpreters,
Abstract Domains,
Abstract States

Figure 7: Composed Analysis Procedure

the set of abstraction precisions Π. An abstraction precision ∈ Π [21]
determines the information to maintain by an abstraction compu-
tation. Different realizations of an abstract domain are possible,
for example, based on predicate logic [20, 33], or based on combi-
nations of several abstract domains [26]. In this work, we do not
evaluate an analysis that conducts any widening, but consider this
functionality central for the Bastet program analysis framework.

4.3 Algorithms

The flow of the analysis steps is determined by several analysis
algorithms, where one analysis algorithm can wrap another one
(Fig. 7). Each of these algorithms operates on (at least) the set
of reached states (reached) and the set of frontier states (frontier,
also called worklist or waitlist) of an abstract reachability graph—
the nodes of this graph are abstract states. The following analysis
algorithms are implemented in Bastet for a resource bounded
model checking [20] procedure.

Reachability. The reachability algorithm, based on configurable
program analysis [13], conducts the reachability analysis as shown
in Alg. 1: Starting from an initial set of reached states, and an initial
set of frontier states (both are passed as arguments to the algorithm),
the algorithm traverses the state space of the analysis task until
either (1) a fixed point of the reachable states was attained, (2) a
target state was found, or (3) a resource budget was exhausted.
A target state is an abstract state for that one or more properties
to check were signaled to be violated. The algorithm is implicitly
parameterized with a state interpreter SI , which defines different
operators the algorithm uses to compute abstract successor states,
merge abstract states, or check coverage. The state-space traversal
strategy is determined by the operation choose on the set frontier.

Feasibility. Whenever the analysis reaches a target state the feasi-
bility of this state has to be checked. A target state is feasible only
if it represents at least one concrete state that is reachable if the
program is executed concretely—for example, in the Scratch VM.
An abstract state can be infeasible (1) in case the wrapped analysis
computed an abstraction (widening) that overapproximated the set
of reachable states, or (2) a decision procedure—for example, a SMT
solver—was not yet invoked to check if the abstract state represents
a non-empty set of concrete states. To foster a clear separation of
concerns, we use a separate feasibility check algorithm—which can
also be extended to implement a CEGAR loop [21] and conduct
precision refinements. When a target state has been reached, then
the reachability algorithm terminates and returns to the feasibility
check algorithm, which might re-invoke the reachability algorithm
after an infeasible state was eliminated. Note that we abstracted
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Algorithm 1 Reachability(frontier0, reached0)SI

Input: reached0 ∈ 2E : Set of initially reached states
frontier0 ∈ 2E : Initial set of frontier states
SI = (D, succ,widen,mergeto, stop, target, init, choose)

Output: (frontier, reached) ∈ 2E × 2E
1: frontier← frontier0
2: reached← reached0
3: while frontier , ∅ do
4: e ← choose(frontier)
5: frontier← frontier \ {e}
6: for each e ′ ∈ succ(e) do
7: e ′′ ← widen(e ′, reached)
8: (frontier, reached) ← mergeto(e ′′, frontier, reached)
9: if not stop(e ′′, reached) then
10: frontier← frontier ∪ {e ′′}
11: reached← reached ∪ {e ′′}
12: if target(e ′′) , ∅ then
13: return (frontier, reached)
14: return (frontier, reached)

away some details of how concrete executions are conducted in the
Scratch VM, that is, not all feasible target states might be actually
feasible due to slightly different semantics—see Sect. 3.5.

Multi Property. The multi-property algorithm [4] maintains the sta-
tus of all properties from the formal specification to check. Among
the set of reached states and the frontier states, the algorithm main-
tains the set unknown of properties for that no verdict was de-
cided, the set violated of properties that have been found to be
violated (along with a counterexample), and the set satisfied of
properties that were decided to be satisfied (possibly paired with
a proof of correctness). The algorithm maintains a budget of re-
sources that is left to check the different properties. To decide a
property’s verdict, another algorithm is invoked if budget is left.

4.4 State Interpreters

The main functionality for assigning meaning to a program’s op-
erations and producing an abstract representation of a program’s
state space and behaviors is provided by a set of state interpreters.
A state interpreter implements abstract interpretation [24, 25] and
builds on the formalisms and operators that were introduced with
the CPA concept [13]. We define a state interpreter by the tuple

SI = (D, succ,widen,mergeto, stop, target, init, choose).

A state interpreter generalizes a configurable program analysis
by allowing for more control of the process of merging the state
space, reflected by the operator mergeto. It further makes the state
space traversal process more explicit through the operators init and
choose. We define the following components:

1. The abstract domain [13, 25] D = ( ÝC, ÝE, [[·]], ⟨⟨·⟩⟩) determines the
form of abstraction that is used to represent sets of concrete states
as abstract states—see Sect. 4.2 for more details.

2. The init operator init : () → 2E × 2E returns the initial sets of
frontier and reached states. It defines the state sets that are passed
initially to the analysis algorithms as arguments.

3. The abstract transfer [13, 25] function succ : E → 2E provides the
set of abstract successor states for a given abstract state. A labelled

abstract transfer succop : E → 2E computes abstract successor
states by interpreting a given program operation op ∈ Op.

4. The widening [25] operator widen : E × 2E → E is used to
compute widenings of abstract states, that is, with e ⊑ widen(e, ·).
Typically, the widening is parameterized implicitly with an abstrac-
tion precision π ∈ Π resulting in widenπ : E × 2E → E.

5. The merge-to operatormergeto : (E × 2E × 2E ) → (2E × 2E ) can
be used to merge a given abstract state into existing abstract states
to keep the abstract reachability graph compact. It is crucial for the
performance of an analysis procedure. Algorithm 2 illustrates one
possible implementation of this operator, which mimics the merge
functionality of the CPA algorithm [13]. The algorithm uses the
function allowMerge : E × E → B, which defines whether or not a
merge is intended, and the operator merge : E × E → E [13] which
actually merges two abstract states—we assume that merge is only
defined for states with allowMerge(e) = true.

The variant allowMergeNever(e, frontier, reached) = (frontier,
reached) never merges a given abstract state into the state space,
and avoids looping over the states already reached, and thus, re-
duces the complexity of the reachability analysis.

6. The stop operator [13] stop : E × 2E → B defines whether or
not the given abstract state should be added to the sets frontier
and reached. Typically, this operator conducts a coverage check
and is crucial for a fixed-point iteration: The state is only added
if not yet covered by the existing set of reached states, that is,
stopCover(e,R) = (∃r ∈ R : e ⊑ r ).

7. The target operator target : E → 2S defines the set of proper-
ties ⊆ S that should be signaled to be reached (or violated) at the
given state. These properties can be, for example, trap properties
of a test generation procedure, or other safety properties to check
by model checking.

8. The choose operator choose : 2E → E determines the state-
space traversal strategy of the analysis: It returns the next state to
compute successor states for from a given set of abstract states (typ-
ically, the set of frontier states). By default, Bastet uses the opera-
tor choosewam which implements the wait-at-meet traversal strat-
egy. For each control location of the transition systems of the LeILa
program to analyze, a wait-at-meet number is computed that en-
sures that all states that lead to a control location on that the control
flow merges are processed before continuing to the merge location.

Partitioning. Three operators in the reachability algorithm take
the set of already reached states reached as argument: the widen-
ing operator widen, the merge-to operators mergeto, and the stop
operator stop. Different subsets of reached might be relevant for
the operators to conduct their job in a sound fashion while not
sacrificing the degree of completeness. Considering only a subset
of reached states can have a considerable impact on the perfor-
mance (and algorithmic complexity, for example, of Alg. 2) of the
analysis. By default, we partition the set of reached states based on
the position in the control flow the different processes are in.
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Algorithm 2 mergetoStd(e, frontier, reached)

Input: e ∈ E: Abstract state to possibly merge
frontier ∈ 2E : Current set of frontier states
reached ∈ 2E : Current set of reached states

Output: (frontier, reached) ∈ 2E × 2E
1: remove← ∅
2: add← ∅
3: for each r ∈ reached do

4: if allowMerge(e, r ) then
5: e ′ ← merge(e, r )
6: remove← remove ∪ { r }
7: add← add ∪ { e ′ }
8: frontier← (frontier ∪ add) \ remove
9: reached← (reached ∪ add) \ remove
10: return (frontier, reached)

4.5 Basic State Interpreters

In the following, we describe the state interpreters that we consider
to be of wider interest, and which we have evaluated in our empiri-
cal study on the applicability of our framework. Figure 7 illustrates
the combination of the analysis components.

Graph Interpreter. The graph interpreter SIG keeps track of the
predecessor–successor relation of abstract states, and constructs the
abstract reachability graph. The graph interpreter uses the abstract
domain DG with the lattice ÝU of graph statesU . A graph state u =
(w, û) ∈ U consists of a wrapped abstract state w ∈ E and a set of
predecessor graph states û ⊂ U . In its merge-to operator mergetoG,
the interpreter makes sure that whenever a state is removed from
the graph (because is was merged into another state), also all its
children are removed from the graph, and also takes care of re-
adding states to the set of frontier states frontier in case one of the
removed states was in there. Note that ourmergeto operator makes
explicit that a merge can affect both the set of reached and frontier
states, which is not exemplified in the original CPA formalism [13].

Control Interpreter. The control interpreter SIC takes care of mod-
eling the control-flow of LeILa programs, including modeling un-
rollings of loops, keeping track of the call stack, conductingmessage
passing, and including the scheduling of threads—see Sect. 3.3. The
position in the control flow and the computation status of the dif-
ferent threads is modeled explicitly (not symbolically). The control
interpreter wraps another interpreter and provides the labeling
between on transitions, that is, the labeled abstract transfer of the
wrapped interpreter is called.

The control interpreter uses the control abstract domain DC with
the lattice ÝZ of abstract control states Z . The interpreter merges
two abstract control states only if all its processes are on the same
control location, if they have the same call stack, the same loop
unrollings, if all processes are in the same computation state, and
if also the wrapped abstract states are supposed to be merged.

SSA Interpreter. The SSA interpreter SIS transforms the program
operations that are passed to its labeled abstract transfer function
into a single-static assignment [5, 62] form, such that wrapped inter-
preters can build on this. In the context of model checking, an SSA
transformation cannot be done in a preprocessing step, but depends

on runtime information such as the number of loop unrollings or
the call stack. The SSA interpreter uses the abstract domainDS with
the lattice ÝS of SSA states S . An SSA state s = (w,η) ∈ S consists of
a wrapped abstract state w ∈ E and a SSA map η : X → N, which
maps to each data location a current SSA index. The SSA interpreter
delegates the decision whether or not to merge two abstract states
to the wrapped interpreter. In case two SSA states are supposed to
be merged, the merge functionality of the SSA interpreter ensures
that also the SSA maps of the states are merged and synchronized,
that is, the SSA ϕ functions applied in the merge operation. The
wrapped analysis is instructed to also synchronize the information
based the ϕ function. This clear separation of concerns is missing
in some [13] established frameworks.

Data Interpreter. The data interpreter SID keeps track of the data
state of LeILa programs by encoding all data (values of data loca-
tions on the heap and the stack) into predicate logic. We require
that this state interpreter is wrapped by an SSA interpreter, which
ensures that all program operations that are given to the labeled
transfer function are in the SSA form.

The interpreter uses the abstract domain DD with the lattice ÝM
of abstract data states M . One data statem = (ϕ) ∈ M consists of
a (block) formula ϕ in predicate logic only, which encodes the full
content of the heap and stack data locations.

In its standard configuration, the interpreter always allows to
merge two abstract data states. That is, given two abstract data
states m1 = (ϕ1) ∈ M and m2 = (ϕ2) ∈ M , the result is a new
abstract data statem3 = m1 ⊔m2, where the join ⊔ of the lattice
corresponds to the Boolean disjunction ϕ1 ∨ϕ2 of the two formulas.
The labelled abstract transfer function succop encodes the semantics
of a given operation into the formula of the successor state.

5 PILOT STUDY

To demonstrate the practical applicability of the Bastet frame-
work for analyzing Scratch projects, we conduct an empirical
pilot study. To make our results easy to reproduce, we provide a
replication package, and provide the Bastet framework as open
source: github.com/se2p/artifact-ase2020/. In this study we aim to
answer the following research questions:

RQ1 (Soundness). To which extent does translating Scratch projects

to LeILa maintain the semantics such that both useful and sound

propositions can be made?

RQ2 (Performance). Are the typical limitations of model checking,

such as the state-space explosion problem and undecidable theories,

limiting factors when applied to Scratch projects?

5.1 Study Objects

We conduct our empirical study based on four Scratch program-
ming exercises taken from the context of primary school program-
ming education [31]. The children are given an informal specifica-
tion of what the program is supposed to do, and so we can compare
their solutions against the specifications, which we formalized in
LeILa. Related work [31] describes details on the setup of the course.

Monkey. This exercise uses two sprites: a circus director and a
monkey. The goal is to have the circus director move continuously

https://github.com/se2p/artifact-ase2020/
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towards the monkey. The formal specification requires that the
circus director must make a step at least once every 100ms and
that the circus director may not move away from the monkey.
Elephant. This exercise is implemented with a single sprite: the
elephant, which has different costumes. The goal is to create the
impression that the elephant is dancing by continuously switching
the costumes. Our formal specification requires that a costume
change must take place at least every 1.2 s.
Cat. This exercise comprises two sprites: a cat and a ball. The goal
is that the cat indicates, via a speech bubble, that it has caught the
ball as soon as it touches the ball sprite. The formal specification
therefore states that within 1.2 s after the sprites touch, the cat
sprite must say that it caught the ball—see Fig. 4.
Horse. This exercise uses a single sprite that reacts to mouse inputs.
As long as the sprite is not touched by the mouse pointer it should
continuously change its color; as soon as it touches the mouse
pointer it should rotate. The formal specification requires that its
color must change at least every 100ms or its direction must change
at least every 100ms if the mouse pointer is touched.

The dataset consists of 279 non-empty solutions to these four
exercises. We automatically translated all solutions to LeILa and
also wrote the formal specifications in LeILa for all four projects.

5.2 Experimental Setup

Bastet was used in revision aa1026a with a bounded model check-

ing configuration, using a time bound of 300 s. All experiments
were conducted on machines equipped with Intel Xeon E5-2650
v2 @ 2.60 GHz CPUs with 256GiB of RAM. Bastet was executed
withinDocker containers. All processes were limited to consume at
most 10GiB of RAM, and were limited to at most 4 CPU cores. The
measured execution (Wall clock) time excludes the time needed to
parse the given Scratch project or corresponding LeILa program,
and the time for starting and initializing the NodeJs environment.

5.3 Experiment Procedure

We conducted the following experiments to answer our questions:

RQ1. To learn about the soundness of Bastet, we first inspected all
student solutions manually and checked if they satisfy the specifi-
cation. We executed Bastet on all of these 279 solutions, and then
compared Bastet results with our manually assigned verdicts.
RQ2. To make statements about the applicability of model checking
to Scratch projects and the resulting performance, we use Bastet
configured as a time-bound model checker and run it on the verifi-
cation tasks—pairs of student solutions and formal specification—
described earlier. Our hypothesis is that Scratch programs tend
to be simple, and might not have the complexity of traditional pro-
grams, and thus, also expensive techniques like model checking
seem in reach to get results efficiently.

5.4 RQ1 Results (Soundness)

Table 1 presents the comparison between the results of the manual
inspection with those computed by Bastet automatically.

Bastet yields 3 false negatives [36]—falsely reports program
correctness. The false negative for Monkey is due to a lost ordering

Table 1: Model Checking Soundness

Exercise True
Positive

True
Negative

False
Positive

False
Negative

Missed
Safe

Missed
Unsafe

Monkey 5 5 1 1 26 16
Cat 4 0 1 2 49 12
Elephant 22 0 0 0 19 39
Horse 9 0 0 0 12 2

Table 2: Model Checking Performance

Exercise Min
Time

Max
Time

Median
Time

Min
Reached

Max
Reached

Median
Reached

Monkey 8.5 18 12 728 9027 6147
Cat 9.0 54 34 1038 11885 3969
Elephant 4.8 300 23.5 572 28164 5701
Horse 5.4 20 17 664 4795 4644

of the actors while translating to LeILa, which leads to an inter-
leaving of the script executions that hides the bug—an imprecision
that can be fixed in principle. The other two false negatives were
produced for the Cat exercise and have the same cause: They both
only check whether the cat touches the ball once at the start of the
program, rather than in a forever loop. Since the programs do not
initialize the sprites’ positions, Bastet assumes that the positions
are non-deterministic, and thus the solutions are actually correct.
This is a good example for the value of formal specifications, and
the challenges of producing them. We can also see 5 true negatives
where Bastet was able to reach a fixed-point in the state space
and to actually prove the correctness of the solutions.

The evaluated configuration produced 40 true positives—cases
where we can observe undesired behavior—and 2 false positives—
cases in which a violation was reported while the solution is correct.
The false positives were produced because we assumed the mouse
position to be non-deterministic as an approximation, while in true
program executions, it can change only after handling messages
from the event dispatcher loop.

The configuration we studied is conceptually only able to provide
correctness proofs for programs without infinite loops. Many of the
solutions contain forever loops, thus, we expected a high number in
the column “Missed Safe”. For 36 verification tasks, Bastetwas not
able to terminate with a solution because of the undecidability of
arithmetic with multiplication, which is used by the atan2 function,
invoked by the pointTowards(..) block.

In total, 95 % of the violations reported were true positives. Con-
sequently, translating Scratch projects into LeILa and interpreting
them by Bastet maintains the semantics in the clear majority of
the studied verification tasks.

5.5 RQ2 Results (Performance)

This question addresses the performance of model checking, using
the Bastet framework, when applied to Scratch projects. Table 2
shows the performance measures for Bastet in terms of time and
size of the abstract reachability graphs, restricted to results with
the verdict false. The median time lies between 12 s for the Monkey
exercise and 300 s for the Elephant exercise. While the number
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of states is substantial considering the size of the programs, we
cannot observe dramatical explosions of the reachability graphs.
Analysis of the runtime behavior of Bastet suggests that large
portions of the time were spent in the SMT solver. Consequently,
while Scratch programs may seem simple and playful, they bear
a high mathematical complexity, which is due to their game-like
nature, involving multiplication and division of natural and real
numbers. The majority of the analysis time is spent in the SMT
solver. Nevertheless, Bastet managed to identify 30 % of all bugs.

5.6 Discussion

This pilot study clearly demonstrates the practical applicability of
Bastet for analyzing real-world Scratch programs. Instead of
demonstrating this based on a basic data-flow analysis, we demon-
strated how even a heavy-weight model checking procedure can be
implemented on top of Bastet to check learners’ programs. While
most of the time for running a verification task is spent in the SMT
solver, we identified further potential for performance improve-
ments by making use of the potential to use alternative implemen-
tations of the analysis operators, for example, by using versions of
the operators stop and mergeto that iterate over smaller partitions
of the reached states. Since LeILa uses a deterministic interleaving
concurrency, we do not face the state-space explosion problem that
is typical for concurrent programs with non-deterministic sched-
ulers. Note that the scheduler implemented in Scratch can have
non-deterministic behavior. Our results indicate that this design de-
cision does only have a minor impact on the soundness of Bastet’s
model checking configuration. Approximations of mathematical
functions such as sin and cos were crucial to cope with some of the
undecidable characteristics that are inherent to Scratch program,
and also to deal with limitations of the SMT solver theories.

6 RELATEDWORK

The increasing popularity of Scratch as an introductory program-
ming environment has triggered research on analyzing the resulting
programs. In particular, the observation that Scratch programmers
tend to develop certain negative habits while coding [49] has led
to investigations into the general quality problems in Scratch
programs. It has been shown that various types of code smells
are prevalent [3, 39, 61, 70] and have a negative impact on code
understanding [38]. Similar habits have been observed outside of
Scratch in the wider area of scenario based programming[32].
Most existing tools for analysis of Scratch programs have their
roots in the Hairball [16] Python script which parses Scratch
2.0 programs into a kind of abstract syntax tree. For example, the
Dr. Scratch [52] website includes code smell reports produced
by Hairball when analyzing learners’ programs. Further analysis
tools aiming to detect code smells include Quality hound [69]
and SAT[19]. These tools mostly analyze Scratch programs only
by matching patterns, while Bastet is a full fledged and config-
urable program analysis framework, and inherits concepts from
well-adopted tools like CPAchecker [14].

A common application of program analysis in the educational
domain is automated grading; The Itch tool [42] translates a small
subset of Scratch programs to Python programs (textual interac-
tions via say/ask blocks) and then runs tests on these programs. The

Whisker tool [65] executes automated tests directly in the Scratch
IDE, and supports property-based testing. Autograding has also
been applied to the related Snap! [35] language [73]. Beyond grad-
ing, an important application area for automated program analysis
is automated hint generation, for example by identifying suggested
next blocks based on the evolution of similar programs [57]. Fur-
thermore, automated refactoring [71] has been considered as a route
to helping students improve their coding skills. Bastet provides
a foundational framework that can better support these activities.
Furthermore, Bastet is implemented directly in TypeScript in order
to support the direct integration of program analyses into educators’
and learners’ environments, which are often Web based.

Bastet uses LeILa as its intermediate language, which was de-
signed to reflect the semantics of Scratch as well as possible, to
provide constructs for program analysis and verification, and to
be comprehensible by teachers and learners. The use of intermedi-
ate languages is a common approach to enable analysis, and other
example languages include an intermediate language for timed
asynchronous systems [17], a translation of Timed CSP into LLVM
IR [8], the C Intermediate Language [53], or a textual represen-
tation of timed state charts [44]. Nevertheless, none of them was
immediately applicable to the programs we aim to analyze.

Building on concepts found in established frameworks such as
CPAchecker, Bastet contributes an evolved and holistic perspec-
tive on the components of a program analysis framework. For ex-
ample, we refined the CPA algorithm by providing a more general
merge operator that can manipulate both the reached and the fron-
tier states. Among the conceptual differences, Bastet is the first
program analysis framework entirely built on Web technologies.

7 CONCLUSIONS

Block-based programming languages are tremendously popular,
and their popularity leads to a need for automated program analysis.
However, the game-like and concurrent nature of typical programs,
their web-based execution environments, and their ad-hoc seman-
tics make this challenging. To address this problem, in this paper
we introduced Bastet, a framework for program analysis and veri-
fication for Scratch programs based on abstract interpretation and
software model checking. Bastet is based on a clean definition of
the semantics of Scratch programs, and a translation to the LeILa
intermediate language. A pilot study on 279 real children’s pro-
grams demonstrated the soundness and potential of the approach.
The pilot study also revealed that, despite their playful nature and
small size, the programs represent fundamental challenges for veri-
fication, offering potential for future work on improving the perfor-
mance and capabilities of the program analysis approach. Besides
principle enhancements and optimizations of Bastet, future work
will also explore different ways to apply Bastet for supporting
learners and educators. To foster research on these aspects, Bastet
is available as open source at https://github.com/se2p/bastet.

ACKNOWLEDGEMENTS

This work is supported by EPSRC project EP/N023978/2 and DFG
project FR 2955/3-1 “TENDER-BLOCK: Testing, Debugging, and
Repairing Blocks-based Programs”. We thank the reviewers whose
comments and suggestions helped to improve this manuscript.

https://github.com/se2p/bastet


ASE ’20, September 21–25, 2020, Virtual Event, Australia Andreas Stahlbauer, Christoph Frädrich, and Gordon Fraser

REFERENCES

[1] Martín Abadi and Gordon D. Plotkin. 2010. A Model of Cooperative Threads.
Log. Methods Comput. Sci. 6, 4 (2010).

[2] Gul Agha and Carl Hewitt. 1985. Concurrent Programming Using Actors: Ex-
ploiting large-Scale Parallelism. In FSTTCS (Lecture Notes in Computer Science,

Vol. 206). Springer, 19–41.
[3] Efthimia Aivaloglou and Felienne Hermans. 2016. How kids code and how we

know: An exploratory study on the Scratch repository. In Proceedings of the 2016

ACM Conference on International Computing Education Research. 53–61.
[4] Sven Apel, Dirk Beyer, Vitaly O. Mordan, Vadim S. Mutilin, and Andreas

Stahlbauer. 2016. On-the-fly decomposition of specifications in software model
checking. In SIGSOFT FSE. ACM, 349–361.

[5] Andrew W. Appel. 1998. SSA is Functional Programming. SIGPLAN Notices 33, 4
(1998), 17–20.

[6] Gilles Audemard, Alessandro Cimatti, Artur Kornilowicz, and Roberto Sebastiani.
2002. Bounded Model Checking for Timed Systems. In FORTE (Lecture Notes in

Computer Science, Vol. 2529). Springer, 243–259.
[7] Thomas Ball and Sriram K. Rajamani. 2001. The SLAM Toolkit. In CAV (Lecture

Notes in Computer Science, Vol. 2102). Springer, 260–264.
[8] Björn Bartels and Sabine Glesner. 2011. Verification of Distributed Embedded

Real-Time Systems and their Low-Level Implementations Using Timed CSP. In
APSEC. IEEE Computer Society, 195–202.

[9] David Bau, D Anthony Bau, Mathew Dawson, and C Sydney Pickens. 2015.
Pencil code: block code for a text world. In Proceedings of the 14th International

Conference on Interaction Design and Children. 445–448.
[10] Dirk Beyer, Adam Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak Ma-

jumdar. 2004. Generating Tests from Counterexamples. In ICSE. IEEE Computer
Society, 326–335.

[11] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and
Roberto Sebastiani. 2009. Software Model Checking via Large-Block Encoding.
CoRR abs/0904.4709 (2009).

[12] Dirk Beyer, Sumit Gulwani, and David A. Schmidt. 2018. Combining Model
Checking and Data-Flow Analysis. In Handbook of Model Checking, Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer,
493–540. https://doi.org/10.1007/978-3-319-10575-8_16

[13] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. 2007. Configurable
Software Verification: Concretizing the Convergence of Model Checking and
Program Analysis. In CAV (Lecture Notes in Computer Science, Vol. 4590). Springer,
504–518.

[14] Dirk Beyer and M. Erkan Keremoglu. 2009. CPAchecker: A Tool for Configurable
Software Verification. CoRR abs/0902.0019 (2009).

[15] Garrett Birkhoff. 1935. On the structure of abstract algebras. In Mathematical

proceedings of the Cambridge philosophical society, Vol. 31. Cambridge University
Press, 433–454.

[16] Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and
Diana Franklin. 2013. Hairball: Lint-inspired static analysis of scratch projects. In
Proceeding of the 44th ACM technical symposium on Computer science education.
215–220.

[17] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne Graf, Jean-Pierre
Krimm, and Laurent Mounier. 1999. IF: An Intermediate Representation and
Validation Environment for Timed Asynchronous Systems. In World Congress on

Formal Methods (Lecture Notes in Computer Science, Vol. 1708). Springer, 307–327.
[18] Guillaume P. Brat and Willem Visser. 2001. Combining Static Analysis and Model

Checking for Software Analysis. In ASE. IEEE Computer Society, 262.
[19] Zhong Chang, Yan Sun, Tin-Yu Wu, and Mohsen Guizani. 2018. Scratch analysis

Tool (SAT): a modern scratch project analysis tool based on ANTLR to assess
computational thinking skills. In 2018 14th International Wireless Communications

& Mobile Computing Conference (IWCMC). IEEE, 950–955.
[20] EdmundM. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded

Model Checking Using Satisfiability Solving. Formal Methods Syst. Des. 19, 1
(2001), 7–34.

[21] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
2000. Counterexample-Guided Abstraction Refinement. In CAV (Lecture Notes in

Computer Science, Vol. 1855). Springer, 154–169.
[22] Edmund M. Clarke, Orna Grumberg, and David E. Long. 1994. Model Checking

and Abstraction. ACM Trans. Program. Lang. Syst. 16, 5 (1994), 1512–1542.
[23] Stephen Cooper, Wanda Dann, Randy Pausch, and Randy Pausch. 2000. Alice: a

3-D tool for introductory programming concepts. In Journal of computing sciences

in colleges, Vol. 15. Consortium for Computing Sciences in Colleges, 107–116.
[24] P. Cousot. 2003. Verification by abstract interpretation. In Verification: Theory

and Practice. Springer, 243–268.
[25] P. Cousot and R. Cousot. 1992. Abstract Interpretation Frameworks. J. Log.

Comput. 2, 4 (1992), 511–547.
[26] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. 2011. The Reduced

Product of Abstract Domains and the Combination of Decision Procedures. In
FoSSaCS (Lecture Notes in Computer Science, Vol. 6604). Springer, 456–472.

[27] Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. Commun. ACM 18, 8 (1975), 453–457.

[28] Caitlin Duncan, Tim Bell, and Steve Tanimoto. 2014. Should your 8-year-old learn
coding?. In Proceedings of the 9th Workshop in Primary and Secondary Computing

Education. 60–69.
[29] Wallace Feurzeig and Seymour Papert. 2011. Programming-languages as a con-

ceptual framework for teaching mathematics. Interactive Learning Environments

19, 5 (2011), 487–501.
[30] Angelo Gargantini and Constance L. Heitmeyer. 1999. Using Model Checking to

Generate Tests from Requirements Specifications. In ESEC / SIGSOFT FSE (Lecture

Notes in Computer Science, Vol. 1687). Springer, 146–162.
[31] Katharina Geldreich, Alexandra Funke, and Peter Hubwieser. 2016. A program-

ming circus for primary schools. In ISSEP 2016. 49–50.
[32] Michal Gordon, Assaf Marron, and Orni Meerbaum-Salant. 2012. Spaghetti for the

main course? Observations on the naturalness of scenario-based programming.
In Proceedings of the 17th ACM annual conference on Innovation and technology in

computer science education. 198–203.
[33] Susanne Graf and Hassen Saïdi. 1997. Construction of Abstract State Graphs

with PVS. In CAV (Lecture Notes in Computer Science, Vol. 1254). Springer, 72–83.
[34] S. Gulwani and A. Tiwari. 2006. Combining abstract interpreters. In Proc. PLDI.

ACM, 376–386.
[35] Brian Harvey, Daniel D Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel

Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. 2013.
Snap!(build your own blocks). In Proceeding of the 44th ACM technical symposium

on Computer science education. 759–759.
[36] Sarah Smith Heckman and Laurie Williams. 2008. On establishing a benchmark

for evaluating static analysis alert prioritization and classification techniques. In
ESEM. ACM, 41–50.

[37] Matthew Hennessy and Gordon D. Plotkin. 1979. Full Abstraction for a Simple
Parallel Programming Language. In MFCS (Lecture Notes in Computer Science,

Vol. 74). Springer, 108–120.
[38] Felienne Hermans and Efthimia Aivaloglou. 2016. Do code smells hamper novice

programming? A controlled experiment on Scratch programs. In 2016 IEEE 24th

International Conference on Program Comprehension (ICPC). IEEE, 1–10.
[39] Felienne Hermans, Kathryn T Stolee, and David Hoepelman. 2016. Smells in block-

based programming languages. In 2016 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC). IEEE, 68–72.
[40] Gerard J. Holzmann. 2000. Logic Verification of ANSI-C Code with SPIN. In SPIN

(Lecture Notes in Computer Science, Vol. 1885). Springer, 131–147.
[41] Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. ACM Com-

puting Surveys (CSUR) 41, 4 (2009), 1–54.
[42] David E Johnson. 2016. ITCH: Individual Testing of Computer Homework for

Scratch Assignments. In Proceedings of the 47th ACM Technical Symposium on

Computing Science Education. 223–227.
[43] Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to program-

ming: A taxonomy of programming environments and languages for novice
programmers. ACM Comput. Surv. 37, 2 (2005), 83–137.

[44] Yonit Kesten and Amir Pnueli. 1992. Timed and Hybrid Statecharts and Their
Textual Representation. In FTRTFT (Lecture Notes in Computer Science, Vol. 571).
Springer, 591–620.

[45] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 2016. 43 years of
actors: a taxonomy of actor models and their key properties. In AGERE!@SPLASH.
ACM, 31–40.

[46] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-

actions on Computing Education (TOCE) 10, 4 (2010), 1–15.
[47] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-

mond. 2010. The Scratch Programming Language and Environment. ACM Trans.

Comput. Educ. 10, 4 (2010), 16:1–16:15.
[48] Linda McIver and Damian M Conway. 1999. GRAIL: A Zeroth Programming

Language. In Advanced Research in Computers and Communications in Education

New Human Abilities for the Networked Society. IOS Press, Netherlands, 43 – 50.
[49] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits

of programming in scratch. In Proceedings of the 16th annual joint conference on

Innovation and technology in computer science education. 168–172.
[50] Robin Milner. 1980. A Calculus of Communicating Systems. Lecture Notes in

Computer Science, Vol. 92. Springer.
[51] Antoine Miné. 2007. Symbolic Methods to Enhance the Precision of Numerical

Abstract Domains. CoRR abs/cs/0703076 (2007).
[52] Jesús Moreno-León and Gregorio Robles. 2015. Dr. Scratch: A web tool to auto-

matically evaluate Scratch projects. In Proceedings of the workshop in primary

and secondary computing education. 132–133.
[53] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.

2002. CIL: Intermediate Language and Tools for Analysis and Transformation
of C Programs. In CC (Lecture Notes in Computer Science, Vol. 2304). Springer,
213–228.

[54] Terence John Parr and Russell W. Quong. 1995. ANTLR: A Predicated- LL(k)

Parser Generator. Softw. Pract. Exp. 25, 7 (1995), 789–810.
[55] Gordon D. Plotkin. 2004. A structural approach to operational semantics. J. Log.

Algebr. Program. 60-61 (2004), 17–139.

https://doi.org/10.1007/978-3-319-10575-8_16


Verified from Scratch: Program Analysis for Learners’ Programs ASE ’20, September 21–25, 2020, Virtual Event, Australia

[56] Amir Pnueli and Aleksandr Zaks. 2008. On the Merits of Temporal Testers. In 25

Years of Model Checking (Lecture Notes in Computer Science, Vol. 5000). Springer,
172–195.

[57] Thomas W Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: towards
intelligent tutoring in novice programming environments. In Proceedings of the

2017 ACM SIGCSE Technical Symposium on Computer Science Education. 483–488.
[58] Partha Pratim Ray. 2017. A survey on visual programming languages in internet

of things. Scientific Programming 2017 (2017).
[59] Thomas W. Reps. 1998. Program analysis via graph reachability. Inf. Softw.

Technol. 40, 11-12 (1998), 701–726.
[60] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their

decision problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358–366.
[61] Gregorio Robles, Jesús Moreno-León, Efthimia Aivaloglou, and Felienne Hermans.

2017. Software clones in scratch projects: On the presence of copy-and-paste in
computational thinking learning. In 2017 IEEE 11th International Workshop on

Software Clones (IWSC). IEEE, 1–7.
[62] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1988. Global Value

Numbers and Redundant Computations. In POPL. ACM Press, 12–27.
[63] Koushik Sen. 2007. Concolic testing. In ASE. ACM, 571–572.
[64] Maria Sorea. 2002. Bounded Model Checking for Timed Automata. Electron.

Notes Theor. Comput. Sci. 68, 5 (2002), 116–134.
[65] Andreas Stahlbauer, Marvin Kreis, and Gordon Fraser. 2019. Testing scratch

programs automatically. In ESEC/SIGSOFT FSE. ACM, 165–175.
[66] Bernhard Steffen. 1991. Data Flow Analysis as Model Checking. In TACS (Lecture

Notes in Computer Science, Vol. 526). Springer, 346–365.
[67] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into

Programming Language Syntax. ACM Trans. Comput. Educ. 13, 4 (2013), 19:1–
19:40.

[68] Minyoung Sung, Soyoung Kim, Sangsoo Park, Naehyuck Chang, and Heonshik
Shin. 2002. Comparative performance evaluation of Java threads for embedded

applications: Linux Thread vs. Green Thread. Inf. Process. Lett. 84, 4 (2002),
221–225.

[69] Peeratham Techapalokul and Eli Tilevich. 2017. Quality Hound—an online code
smell analyzer for Scratch programs. In 2017 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC). IEEE, 337–338.
[70] Peeratham Techapalokul and Eli Tilevich. 2017. Understanding recurring quality

problems and their impact on code sharing in block-based software. In 2017 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
43–51.

[71] Peeratham Techapalokul and Eli Tilevich. 2019. Code quality improvement for all:
Automated refactoring for Scratch. In 2019 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC). IEEE, 117–125.
[72] Jake Trower and Jeff Gray. 2015. Blockly language creation and applications:

Visual programming for media computation and bluetooth robotics control. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
5–5.

[73] Christiane Gresse VonWangenheim, Jean CR Hauck, Matheus Faustino Demetrio,
Rafael Pelle, Nathalia da Cruz Alves, Heliziane Barbosa, and Luiz Felipe Azevedo.
2018. CodeMaster–Automatic Assessment and Grading of App Inventor and
Snap! Programs. Informatics in Education 17, 1 (2018), 117–150.

[74] David Weintrop, David C Shepherd, Patrick Francis, and Diana Franklin. 2017.
Blockly goes to work: Block-based programming for industrial robots. In 2017

IEEE Blocks and Beyond Workshop (B&B). IEEE, 29–36.
[75] David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the

question: students’ perceptions of blocks-based programming. In Proceedings of

the 14th international conference on interaction design and children. 199–208.
[76] Niklaus Wirth. 1971. The Programming Language Pascal. Acta Inf. 1 (1971),

35–63.
[77] Niklaus Wirth. 2002. Pascal and Its Successors. In Software Pioneers. Springer

Berlin Heidelberg, 108–119.


	Abstract
	1 Introduction
	2 Background
	3 Intermediate Language
	3.1 Language Features
	3.2 Control Transition System
	3.3 Concrete Semantics
	3.4 Specifying Programs
	3.5 Approximations

	4 Analysis Framework
	4.1 Overall Architecture
	4.2 Abstract Domain
	4.3 Algorithms
	4.4 State Interpreters
	4.5 Basic State Interpreters

	5 Pilot Study
	5.1 Study Objects
	5.2 Experimental Setup
	5.3 Experiment Procedure
	5.4 RQ1 Results (Soundness)
	5.5 RQ2 Results (Performance)
	5.6 Discussion

	6 Related Work
	7 Conclusions
	References

