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ABSTRACT

Block-based programming environments like Scratch foster en-
gagement with computer programming and are used by millions of
young learners. Scratch allows learners to quickly create enter-
taining programs and games, while eliminating syntactical program
errors that could interfere with progress. However, functional pro-
gramming errors may still lead to incorrect programs, and learners
and their teachers need to identify and understand these errors. This
is currently an entirely manual process. In this paper, we introduce
a formal testing framework that describes the problem of Scratch
testing in detail. We instantiate this formal framework with the
Whisker tool, which provides automated and property-based test-
ing functionality for Scratch programs. Empirical evaluation on
real student and teacher programs demonstrates that Whisker can
successfully test Scratch programs, and automatically achieves
an average of 95.25 % code coverage. Although well-known testing
problems such as test flakiness also exist in the scenario of Scratch
testing, we show that automated and property-based testing can
accurately reproduce and replace the manually and laboriously pro-
duced grading efforts of a teacher, and opens up new possibilities
to support learners of programming in their struggles.
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1 INTRODUCTION

Block-based programming languages [4] are intended to engage
young learners with computer programming, and programming
environments like Scratch [31] are hugely successful at doing so.
At the time of this writing, more than 37 million Scratch projects
have been shared by their creators, and many more programs are
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written without sharing, offline, or using some of the many de-
rivative and related programming environments for learners that
follow similar principles. A particular advantage of the block-based
paradigm contributing to this success is that it eliminates syntacti-
cal programming errors [4]: In Scratch, programs are assembled
by dragging and dropping command blocks from a toolbox; these
blocks can only be assembled in syntactically valid ways to pro-
grams. However, while being syntactically correct, a program can be
functionally incorrect, and there is nothing about block-based pro-
gramming languages that would make identifying and correcting
functional errors easier than in any other programming language.

Functional correctness is usually assessed with automated tests,
which are a prerequisite for many other program analysis tech-
niques ranging from debugging to repair. While Scratch program-
mers might be unlikely to write tests for their educational and fun
programs, this does not mean there is no demand for automated
analysis: In particular because users are learners, theywould particu-
larly benefit from tool support to overcome programming problems.
This demand extends from learners to their teachers, who have to
provide feedback, debug programs, and grade them. However, even
though Scratch programs are constructed from standard program
statements, what defines a program itself is different from standard
programming languages. Without a notion of functions, tests have
to focus on the user interface, which consists of objects (sprites)
interacting with each other on a graphical stage. The properties of
these objects may be fuzzy such that pixel-perfect precision is often
not realistic to expect, and the nature of typical Scratch projects
means that randomness is often involved. Currently, there are no
means for automatically testing Scratch programs.

In this paper, we explore the problem of automatically testing
Scratch programs. Since Scratch was created mainly with ped-
agogical goals in mind, it differs fundamentally from other types
of programs. From a technical perspective, a Scratch program
runs instances of its functional units (scripts) highly concurrently
by dynamic process creation, and its behavior is determined in
an event-driven manner; events can stem from interactions with
the user, such as inputs from the keyboard or the mouse, can be
triggered by different functional units of the Scratch program it-
self, which can send and receive custom messages, or can originate
from peripheral hardware the program is supposed to interact with.
We describe the desired behavior with a set of temporal proper-
ties, which constitute the program specification. Since Scratch
programs heavily rely on timers (for example, to measure elapsed
or remaining time, and to trigger events or choose from different
control-flow branches to proceed in), the logic needs to provide a
means to reason about real time besides being able to reason about
temporal relationships of different behaviors and states.

These properties are checked by executing Scratch tests, which
include sequences of events that are sent to the Scratch program.
In order to test whether a program violates specified properties, we
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Figure 1: A perspective on Scratch programs

have developed a framework to execute user-specified automated
tests that exercise these properties. Since the combinatorial explo-
sion of possible sequences of events that can be sent to a Scratch
program, and its concurrent execution, are challenging to check
with traditional testing, our framework provides functionality based
on property-based testing [8, 14]: Automated input generation is
used to exercise a Scratch program, while properties (safety and
bounded liveness) are monitored for violations.

In detail, the contributions of this paper are as follows:
• We introduce a formal framework that defines Scratch pro-
grams and the problem of Scratch testing.

• We introduce Whisker, a concrete instantiation of our formal
Scratch testing framework, which supports manually written
tests as well as automated property-based testing.

• We empirically evaluate the feasibility of Scratch testing and
the effectiveness of Whisker on Scratch projects in an educa-
tional context where tests are used for auto-grading.
Our study on 37 student-written and teacher-marked Scratch

programs reveals a strong correlation (Pearson’s correlation of up
to 0.9) between automated tests and the grades determined by a
teacher, demonstrating that automated Scratch testing with both,
manually written tests as well as automated property-based test
generation, is feasible. Experiments on 24 common educational
projects further demonstrate that automated test generation is able
to achieve an average of 95.25 % code coverage on Scratch projects,
and can thus relieve users (teachers) from the need to provide
test inputs manually. However, our experiments also reveal that
problems known from the wider field of software testing, such as
test flakiness, also exist in the domain of testing Scratch programs.

2 TESTING SCRATCH PROGRAMS

In the following, we provide a formalization for discussing auto-
mated testing for the Scratch programming language. Sets are
denoted by uppercase letters: A,B, . . . ,Z . Elements of sets are de-
noted by lowercase letters: a,b, . . . , z. Lists, vectors, sequences, or
tuples (or sets thereof) are denoted by adding a bar : ā, B̄, Z̄ . The set
of all words over a set S is denoted by S∗. We consider lists, words,
and sequences to be dual to each other. Sets get enumerated in curly
brackets: {e1, . . . , en }. Sequences are enumerated in angle brackets:
⟨e1, . . . , en⟩. Tuples are shown in round brackets: (e1, . . . , en ).

2.1 The Scratch Programming Language

We describe and formalize three perspectives on Scratch: The user
(programmer) perspective, its syntactic model, and its semantic
model. These perspectives aid in (1) getting a deep understanding of
the expressiveness and design of the language, and in (2) providing
a precise description of our automatic testing approach.

User Perspective. Scratch programs are created by combining vi-
sual blocks that correspond to syntactical elements of the language,
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Figure 2: The semantic Scratch program model.

such as control-flow structures. Only blocks that lead to syntacti-
cally valid programs can be combined (no syntactical coding errors).
From the user-perspective, a Scratch program consists of the stage,
which represents the application window with its background im-
age, a collection of sprites that are rendered as different images on
the stage, which the user can interact with and manipulate. Thus
conceptually (see Fig. 1) the user interface is composed of a list
of layers v̄ = ⟨Stage, Sprite1, . . .⟩, where the stage and its sprites
map to exactly one layer each. We abstract from possible additional
layers representing canvases on which the developer can paint pro-
grammatically or on which movies can be shown without loss of
generality. Each layer has a collection of scripts that define the ac-
tual program logic. In the development environment, the execution
of programs is started by clicking on a green flag  symbol. These
concurrent programs are interpreted and executed in the Scratch
virtual machine, which then makes use of techniques like WebGL,
Web Workers, and Web Audio to provide a user interface.

Syntactic Model. On the syntactical perspective, we formally repre-
sent a Scratch program as a sequence App = ⟨s̄1 . . . s̄n⟩ of groups
of scripts, where a script group s̄i = ⟨si1 . . . sin⟩ ∈ S∗ binds scripts
logically and maps either to the stage or one of the sprites. By
convention, the first script of a script group always stores the ac-
tual images (costumes) for drawing the sprite. The collection of all
scripts is denoted by the symbol S . A script s = (L,X ,G, l0) ∈ S is a
tuple that represents a control-flow automaton [20], with the set of
control locations L, the set of data locations X , the control transition
relation G ⊆ L × Ops × L, and the initial control location l0. The
set of program operations Ops is defined by a grammar, which is
constituted from a set of communication primitives (send, receive,
wait), operations to control processes (clone, kill), possibilities to
determine the current time (now), and expressions on the types that
are supported by Scratch (number, string, bool, and lists thereof).
The semantics of the operations corresponds to similar operations
found in programming languages such as C or Go.

SemanticModel. Running a Scratch program results in the creation
of a collection of anonymous processes—see Fig. 2 for an illustration.
Each process p ∈ P is the instance of a script s = (L,X ,G, l0) ∈ S
which belongs to a script group s̄ . The processes of a script group
are instantiated to form a process group which may contain several
instances of the same script. By convention, the first process p1 in a
process group w̄ = ⟨p1, . . .⟩ is the interface process and corresponds
to the first script in the script group. The interface process provides
an interface to the environment, such as the underlying virtual
machine, or peripheral hardware components. We use interface
processes, for example, to trigger the initialization of the graphical
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environment, and providing the possibility of querying and manip-
ulating its attributes to other processes. Beside providing access
to the graphical user interface, we also use interface processes to
store and read data on remote processes (services)—which reflects
the Scratch feature to store variables in the Cloud.

A concrete state c = ⟨p1, . . . ,pn⟩ ∈ C of a Scratch program
is modeled as a list of concrete process states. A concrete pro-
cess state maps to each data location x ∈ Xp a concrete value—
which is dependent on the type of the data location. The set of
data locations Xp = X ∪ {pc, pstate, pgroup, pwaitfor, ptime} ex-
tends the set X of data locations from the script by five process-
related entries: The program counter pc ∈ L that stores the cur-
rent position in the control flow of the corresponding script, the
process mode pstate ∈ {Done,Running,Wait, Yield}, the process
group id pgroup ∈ N0, a bounded number of awaited messages
pwaitfor ∈ Nk0 (at mostk many), and the system time pwaitfor ∈ N0
in milliseconds since 1970—which we assume to be synchronized
among all processes. The function l̄ : C → L∗ maps a concrete
state c to a sequence l̄(c) = ⟨l1, . . .⟩ of locations that reflects the
current position in the control flow of the scripts.

The set of all feasible executions of a Scratch program is de-
scribed as a collection of concrete execution tracesC ⊆ C∗, where the
set C∗ consists of all words over the set of concrete states C . Each
execution trace c̄i = ⟨c1, . . . , cn⟩ ∈ C starts in an initial concrete

state c1 for which all processes are on the initial control location l0
of the corresponding scripts. An execution trace c̄i describes an
interleaving of processes that are executed in parallel—as studied
in trace theory [33]. We also refer to the set of all feasible execution
traces of a Scratch program App by its denotation [[App]] ⊆ C∗.

The semantics of Scratch can be described using a memory
model that is based on message passing, where processes can only
communicate by passing messages and without using globally
shared variables for this purpose. Several arguments support this:
(1) Scratch allows to store variables in the Cloud and the mes-
sage passing paradigm can model the degree of reliability of pro-
cesses [9], (2) Scratch allows to connect other sources of infor-
mation such as hardware sensors that are connected in different,
more or less reliable, ways, and (3) shared memory access can be
modeled using message passing [3, 42].
2.2 Scratch Testing

Building on our formal definition of Scratch programs, we now
(1) define our understanding of testing, (2) characterize the type
of properties that we test, (3) describe how tests for Scratch are
operationalized (4) how these operationalized tests are executed
to actually check the program, and (5) provide a notion of error
witness for failed Scratch tests. Please note that we test fully
integrated Scratch programs, that is, on the level of system tests.

We assume that testing is based on the following conceptual

workflow, which breaks down the specification and testing process
into small tasks. Please note that we assume this to be the optimal

process; in practice, step (2) and step (3) might be combined; in
ongoing work we provide a more user-oriented way of specifying
Scratch programs in a Scratch-like manner.
(1) Formulation. An informal requirements specification is written

or available in natural language—which in a learning context
would typically be presented to the learners as assignment.

(2) Formalization. Conceptually, the requirement specification is
translated into a formal language (e.g., temporal logic) where
the actual implementation techniques are not yet defined. The
result is a formal specification, that is, a set ΦApp of properties
that the program must satisfy.

(3) Operationalization. The properties are operationalized by trans-
lating them into a representation for actually comparing them
to the semantic model of the program (submission). The result
is a set SΦApp of operationalized properties.

(4) Testing. The implementation is tested on whether it satisfies
the operationalized set of properties or not—also known as
conformance testing [14]. For this purpose, the program has to
be executed with appropriate test inputs such that the expected
behavior is observed or an error can be witnessed.

Test, Test Input, Property. A test is a means to show the presence of
a bug, or show the absence of a bug for a specific set of inputs [10].
The notion of a test is inseparable from a notion of correctness,
which specifies the correct and expected behavior—which we de-
note as the desired property to test. A test input is an input—which
can be a sequence of input symbols or triggered events—that is
passed to the system under test; one test input can be applicable to
conduct different tests, that is, to check different properties—which
is known as collateral coverage. The process of testing is conducted
by running a set of tests, that is, stimulating the system with test
inputs and checking whether the properties are satisfied or not.

More formally, we define a test as a pair (ϕ, τ ) of a temporal

property ϕ to check and a test input τ . The property ϕ ∈ Φ defines
the set of execution traces of a program that exhibit the desired
behavior. The denotation of a property [[·]] : Φ → 2C∗ maps a given
property ϕ to the set of execution traces [[ϕ]] ⊆ C∗ that satisfy the
property. The test input τ ∈ T determines which execution trace of
a program to check. That is, a test input is a function τ : 2C∗

→ 2C∗

that guides and restricts the set of execution traces that a program
execution can take; given a set of execution traces C ⊆ C∗, a test
input is said to be effective if and only if τ (C) ⊂ C .

Timed Temporal Properties. Different logics are available [25] (as
well as corresponding algorithms and tools [5]) to specify and rea-
son about desired properties of a program formally and on an ab-
stract level. These logics are different in their levels of abstractions
and their expressiveness. The actual choice of a specification logic
is often a matter of taste and should align to the users’ needs. The
behavior (control flow) of Scratch programs is heavily influenced
by (discrete) timers, which express how much time has elapsed
since they have been started, and the calculus that can be done on
this points in time. That is, a temporal logic that is used to specify
Scratch programs should also be able to express properties based
on real time. One example is MITL (metric temporal logic with
intervals) [39], which extends LTL (linear temporal logic) and mod-
ifies the temporal operators to also reason about intervals of time
and the relationship of this intervals. Table 1 provides examples for
specifications in natural language and their MITL counterparts.

We use temporal logic in this paper to provide a clean formal-
isation, but it is not necessary in practice for users to express re-
quirements in temporal logic. There would, however, be several
benefits of doing so: (1) going from the abstract to the concrete
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Table 1: An example specification. See the legend below.

# Natural Language↙ Temporal Logic (MITL)

1 Sprite A moves downwards only.
G ¬(A.y′ > A.y)

2 The countdown ticks down once a second.
G F[0,1 s](countdown

′ = countdown − 1)
3 Points get increased by 7 whenever sprite A touches sprite B.

G (¬touches(A,B) ∨ F[0,100 ms](points
′ = points + 7))

Legend. We use MITL with the temporal operators: eventually F, next X,
globally G, until U, and release R. A subscript t̄ = [a, b] can be added to
each operator such that the condition is restricted to hold in the given time
interval. The given predicates can be translated into propositions [27].

specifying desired properties of a program helps in dividing the

problem, it (2) provides a less ambiguous [32] description of the
expected behavior while not anticipating a solution upfront, and
(3) this would provide a tool for Scratch to introduce people to

temporal logics and the process of formal specification.

Test Operationalization. To model how a given test t = (ϕ, τ ) ∈

T is executed on the Scratch program App = ⟨s̄1, . . . , s̄n⟩, we
operationalize tests by bringing them to the same abstraction level
the program is also formalized in, and instantiate both the test input
and the property to check as Scratch scripts in script groups:
(1) Scratch Observer. A group of scripts—which might consist of a

single script—that monitors whether or not the Scratch pro-
gram under analysis satisfies a property ϕ is called the Scratch
observer. More precisely, it monitors whether there is a state that
violates the specification: That is, a Scratch observer is a script
group s̄¬ϕ ∈ S∗ with at least one script s¬ϕ = (L,X ,G, l0, le ) ∈
s̄¬ϕ with an additional failing target location le ∈ L—which
must not be reached to satisfy the property.
The denotation [[s̄¬ϕ ]] of the Scratch observer consists of the
set of all execution traces for which the property is violated,
i.e., that reach a violating location le . That is, each execution
trace c̄ = ⟨c1, . . . , cn⟩ ∈ [[s¬ϕ ]] terminates with le ∈ L(cn ).
A Scratch observer s̄¬ϕ is equivalent to the negation of the
property to check, that is, [[s̄¬ϕ ]] = [[¬ϕ]].
The Scratch observer does not modify the state of the other
processes that are executed along with it while running the test.
Nevertheless, it is stateful and can introduce and modify its own
variables to keep track of the system state and changes to it. That
is, it describes an observable aspect which is known [24] to not
affect temporal properties (except next-state properties, which
we do not have) of the system to check. The operationalization
as Scratch observers provides sufficient expressiveness for
safety properties and bounded liveness properties [26, 40].

(2) Scratch Harness. A harness is used stimulate and control a
subject. We operationalized the test input in a Scratch harness,
which takes the role of stimulating the Scratch program under
test with inputs, which would otherwise be provided by the
environment—in our case, by the user—and restricts the state
space of the program to analyze. The Scratch harness is a
Scratch script group s̄τ ∈ S∗ that stimulates the program with
a sequence of inputs, each input for a different point in time.
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Legend. A variable x must store the number of messages received within a
time bound of 40 ms. The Scratch program App to check declares a
variable x and initializes it with 0; so does the observer. The observer
models the expected behavior and checks whether it corresponds to the
actual behavior. The harness process produces the test inputs (messages).

Figure 3: Test execution example

The harness can also reset the random number generator of the
Scratch virtual machine based on a seed to ensure determinis-
tic and reproducible test execution. We require that [[s̄τ ]] ⊆ [[τ ]].

Our operationalization of a given test t = (τ ,ϕ) results in a pair
(s̄τ , s̄¬ϕ ) ∈ S∗ × S∗ of script groups.
Test Execution. To check whether a test leads to an undesired state
or behavior on a given program, we check whether the intersec-
tion of the execution traces denoted by [[App]] ∩ [[τ ]] ∩ [[¬ϕ]] is
empty, that is, if the program App does not have an execution trace
that violates the property ϕ for all given test inputs. Formally, we
describe the possible executions of a program by a transition sys-
tem TS = (C, c1,→), where c1 ∈ C is the initial (concrete) program
state and the transition relation →⊆ C × C denotes all possible
transitions between program states. Please note that this transition
relation also implicitly encodes information about the scheduling
of processes which were instantiated from the Scratch scripts.

Given the program App = ⟨s̄1, . . . , s̄n⟩ to test, we add the opera-
tionalized test as additional script groups s̄¬ϕ and s̄τ ∈ S∗ and create
the instrumented program variant App′ = ⟨s̄τ , s̄¬ϕ , s̄1, . . . , s̄n⟩. The
program App′ is then executed by a virtual machine (VM) which
is aware of the role of the script groups s̄τ and s̄¬ϕ , and sched-
ules them such that they can take their roles. One step of the VM,
which is represented by the transition relation of the transition
system, conducts a special scheduling that allows for controlling
and observing the execution behavior in a sound manner: (1) The
processes of the Scratch harness can make their transitions first,
(2) the actual processes of the Scratch program App make their
steps afterwards, and finally, (3) the Scratch observer is invoked
to check if the resulting state conforms to the specification. That
is, one transition (ci , c

′′′
i ) ∈→ of the transition relation for the

program App′ consists of following steps:

ci
s̄τ
−−→ ci′

s̄1, ...,s̄n
−−−−−−−→ ci′′

s̄¬ϕ
−−−→ ci′′′

From this scheduling arises a requirement: Certain variables must
only be compared by the observer but not assigned to observer-
local variables to determine state transitions. The process under
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Figure 4: Our automatic test generation framework

observation might or might not have handled a message, which
the observer might have already anticipated, which the observer
itself could already have done. We assume that the harness de-
fines all information that is provided by the environment, such as
mouse positions, pressed keys, and even numbers from random
number generators. We assume that the observer receives the same
information to model the expected behavior.

We allow for composing the functionality of harness and observer
into one logical unit under the following condition: The result must
not restrict the state space of the program under analysis besides
modeling an environment, which can produce and consume inputs.
This allows for writing tests in a fashion that established tools, such
as Selenium, propagate. Figure 3 illustrates a test execution.
Error Witness. To make bugs (property violations) reproducible and
to reduce the chance of a false alarm—which could lead to wrong
grading in case of an automated grading scenario—an error wit-

ness [6] is provided. In case of a Scratch program, an error witness
is a sequence of inputs τ ∈ T for which a given property is violated;
that is, one of the states along the execution trace c̄ ∈ [[App]] that
results from replaying the error witness violates the property. We
consider only error witnesses of finite length to prove the violation
of safety properties and bounded liveness properties [26, 30].

3 WHISKER FRAMEWORK

We present Whisker, a tool and framework for automatically test-
ing Scratch programs in a property-based [8, 14] manner. The
framework maintains a collection of properties to check and pro-
vides means for automatically exploring states and behaviors of a
given program by generating effective test inputs. Tests are exe-
cuted on fully-integrated programs, that is, they are system tests
which also interact with the environment, for example, the con-
nected output device. Please note that the current version of the
framework does not yet provide means to explicitly mock other
connected hardware components such as micro:bit [16] or Lego [12]
components—for now, we assume that we can simulate these com-
ponents by providing a corresponding interface process that mocks
components by sending and receiving expected messages.

3.1 Framework

Whisker consists of three main components—see Fig. 4: (1) a work-
list algorithm, (2) a testing procedure, (3) the Whisker virtual
machine; these components are controlled using a user interface.
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...

...

Instrumentation

......... ......... .........

Processes
under Test

Harness
Processes

Observer
Processes

Whisker VM

Figure 5: Instantiated processes for testing inWhisker

Input and Output. Whisker takes as input a set of programs to
test—for example, submissions for a programming exercise, or dif-
ferent variants of a program in general—and the specification, that
is, a set of properties to check. For now, we assume that only one
program is tested, but the approach extends to sets of programs
naturally. Whisker produces two sets as output: the violated prop-
erties, where each property is then paired with an error witness for
reproducing the bug, and a set of conditionally satisfied properties—
they are tested but not verified. Optionally, Whisker produces a
testing report—in the TAP13 format [28]—which summarizes all
tests that have been conducted, as well as a coverage report.
Whisker Worklist Algorithm. Whisker executes a worklist algo-
rithm, which maintains three sets: worklist, violated, and tested;
the algorithm is illustrated in Fig. 4. The set worklist contains the
properties that have not been tested so far. The set violated contains
the violated properties, paired with corresponding error witnesses.
The set tested contains the set of properties that have been tested
and for whichWhisker was not able to identify any violations (i.e.,
they are conditionally satisfied). In each iteration of the algorithm,
which loops until the set worklist is empty, a set of properties to
test is removed from the set worklist by an operator choose, and
then handed over theWhisker test loop for testing.
Whisker Test Loop. Test execution is controlled by the Whisker

test loop, which is called by theWhisker worklist algorithm and
wraps the Whisker virtual machine. This algorithm is responsible
for initializing theWhisker virtual machine with the program to
test, and to instantiate corresponding processes for the Scratch
observers and the Scratch harness (see Fig. 5). That is,Whisker
loads and starts the program before each test starts. The test loop
repeats with testing the program with new test inputs until the
resource budget that is assigned to the set of properties to test is
exhausted. To avoid flaky tests [29] due to randomness, the random
number generator of theWhisker virtual machine can be initialized
with a seed. For testing with randomly generated inputs, programs
often need to be reset multiple times inside of one test execution,
because the test could get stuck in some state of the program.
Whisker Virtual Machine. The actual execution of tests is conducted
in theWhisker virtual machine (VM) in which the Scratch pro-
gram, the observers, and the harness are instantiated as a set of
processes. TheWhisker VM wraps the original, and unmodified,
Scratch VM and makes use of its step-function. The function step
implements the operational semantics of the Scratch programming
language and is responsible for making the transition from one con-
crete state c ∈ C of the machine to its successor state c ′ ∈ C . The
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Figure 6: The Whisker step function and its scheduling

function step of the Whisker VM consists of the following smaller
steps—Fig. 6 provides a sequence diagram that illustrates how this
results in the preemptive scheduling of the different processes (the
Scratch VM executes processes as Green Threads [44]):
(1) Control. The Scratch harness is invoked to make its transitions,

which produce inputs that are sent as messages/events to the
Scratch program under test.

(2) Transit. The Scratch VM step function is invoked to make the
actual transition to the next state of the Scratch program, for
example, by handling themessages that were added to the queue
previously. To ensure responsiveness of the user interface, the
number of control-flow transitions that are taken within one
call of step is limited to a fixed amount of time (at most 1/30 s),
after which a repaint is conducted.

(3) Observe. The observer of each property is invoked. We check
whether the Scratch VM is still in a state that satisfies a given
property; if not, the information is propagated back to the test
loop, which takes note of the violation and also decides whether
to continue the state space traversal or not—resources might be
left to also check other properties.

Both the Whisker VM and the wrapped Scratch VM advance
several of the processes (instantiated scripts) in one step of the VM,
that is, the processes are executed concurrently. The VM’s schedul-
ing strategy allows that one process can take several control-flow
transitions in one step. Whenever the program state or behavior
that is observable from the perspective of the user changes, execu-
tion of the scripts is stopped and the step function of the Scratch
VM returns. This ensures that the Scratch observer scripts can
take note of (observe) all relevant state transitions.
Whisker Web UI. Currently, Whisker provides its own web GUI—
see Figure 7. This Web UI displays Scratch’s stage, a table of tests
loaded, and a test report in TAP13 format. Furthermore, it supports
batch testing more than one program with the same test suite.

Whisker and Scratch 3.0 are written in JavaScript. Our for-
malization, in form of concurrently executed sequential processes,
provides an abstraction that masks out the details of the implemen-
tation, and provides a clear mental model of Scratch programs
and the Whisker framework. Together with Whisker, we ship the
Whisker testing API for automated testing of Scratch programs.

Figure 7: Screenshot of Whisker’s web GUI

3.2 Dynamic Test Harness

Testing is conducted by stimulating a test subject with inputs and
observing the behavior, which is then checked for conformance
with the property to check. The task of stimulating the subject with
inputs is conducted by the test harness. We consider two types of
harnesses: (1) static test harnesses that stimulate the system with
an upfront fixed sequence of inputs, and (2) dynamic test harnesses

that stimulate the system with a dynamically (possibly at random)
determined sequence of inputs—a repeated execution of the same
dynamic test harness should eventually lead to different sequences
of messages if they are produced non-deterministically (randomly).

Informed Stimulation. Generally, the sequence of inputs, and the
alphabet thereof, that is produced by a dynamic test harness can be
determined based on (1) the history of states of the virtual machine
that it has observed already, (2) earlier instantiations of the machine
and its states, (3) a persistent storage (catalog or database) as used
for search-based test generation [19], or (4) by some form of static
analysis (for mining or inference) of the Scratch program.

A large portion of information for input generation can be gained
by looking into the state of the VM, which also reflects the messages
different processes are waiting for: Given a concrete state c =
⟨p1, . . . ,pn⟩ ∈ C , which consists of n concrete process states: Each
concrete process state pi can be in a different mode, at a different
location of the control flow of the corresponding script, some of the
processes can be waiting for events to happen; the set of messages
that are awaited is denoted by wf(c) =

⋃
{mi | pi ∈ c ∧ mi ∈

pi (pwaitfor)}. This information can be used to choose inputs to
steer the execution to certain regions of the state space.

We leave elaborated strategies to derive (more) effective se-
quences of inputs as options for extending our framework. Ideally,
also the distribution of messages and their payloads is taken into
account for optimizations and to achieve the chosen coverage goal.

Scratch Inputs. Test harnesses stimulate and control the test sub-
ject by sendingmessages and triggering corresponding events in the
processes. The sequence of states that a program can be observed in
is determined by a sequence of messages it receives. Scratch pro-
grams, as discussed in this work, are controlled by the user using
mouse and keyboard, that is, the program reacts to correspond-
ing inputs: Possible inputs include, for example, mouse movement,
mouse button presses, keyboard key presses and entering answers
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Figure 8: Some of Scratch’s event and sensing blocks

to ask blocks—see Fig. 8 for examples of Scratch blocks that han-
dle inputs. This is reflected in the following input grammar, which
defines how a message can be produced:

input = KeyDown key | KeyUp key | MouseDown pos |

MouseUp pos | MouseMove pos | TextInput text

key = keycode inteдer l iteral

pos = xpos inteдer l iteral ypos inteдer l iteral

text = txt str inдl iteral

Grammar Strengthening. While typical Scratch programs can be
controlled by inputs that were produced based on above gram-
mar, not all productions might be effective for a given (specific)
Scratch program. To increase the effectiveness of the resulting
test inputs, we add constraints that restrict the possible products of
the grammar; this information is obtained by statically analyzing
the syntactic representation of the Scratch programs:

keycode ∈ [<keys checked by the program>]
txt ∈ [<strings used in the program>]
xpos ∈ [−240..240] ∧ ypos ∈ [−180..180]

The grammar is strengthened with the following constraints:
(1) only key codes are produced for which the program implements
corresponding handlers, (2) only strings are produced that can
match in the corresponding string comparisons in the program,
and (3) the mouse coordinates are limited to be within the screen.
Stochastic Test Harness. Similar to other tools for property-based [8,
14] testing, we generate inputs at random and use a dynamic test
harness for this purpose. Each time our stochastic test harness
is invoked to control the execution of the program, it uses the
strengthened grammar to produce an input message to send to the
program by choosing a random production: We conduct a simple
form of grammar-based fuzzing [18] to generate inputs. While it
would be possible to assign the productions different probabilities,
we assume a uniform distribution of different message types.

4 EMPIRICAL STUDY

To study the feasibility of Scratch testing and theWhisker frame-
work, we empirically answer the following research questions:
RQ1: How frequent are flaky tests in Scratch programs?
RQ2: Can automated Scratch tests be used for automated grading?
RQ3: What block coverage can automated test generation achieve?
RQ4: Can property-based testing be used for automated grading?

An artifact that contains all data and software to reproduce our
study is available online: github.com/se2p/artifact-esecfse2019.

4.1 Study Objects

We use two sets of Scratch programs for our experiments. The
first set is based on two Scratch workshops with a sixth and a
seventh grade class, respectively, conducted at a local school in
Passau. In these workshops, the students were taught important

Table 2: Project specification in natural language

# Property

In
it 1 Timer and score start at 30 seconds and 0 points, respectively

2 Bowl starts at X = 0 / Y = −145
3 Fruits have a size of 50%

Bo
w
l 4 Bowl moves left/right when corresponding arrow key is pressed

5 Bowl can only move horizontally with a speed of 10

Fr
ui
tF

al
lin

g 6 Apples fall down
7 Apples fall in a straight line with a speed of -5
8 Bananas fall down
9 Bananas fall in a straight line with a speed of -7

Fr
ui
tS

pa
w
n

10 Apples spawn again at the top of the screen after touching the bowl
11 Apples spawn at random X position
12 Apples spawn at Y = 170
13 Bananas spawn again at the top of the screen after touching the bowl
14 Bananas spawn at random X position
15 Bananas spawn at Y = 170
16 Only one apple must fall down at a time
17 Only one banana must fall down at a time
18 Banana must wait for a second before falling down in the beginning
19 Banana must wait for a second before falling down after displaying ”-8”

Fr
ui
tI
nt
er
ac
tio

n 20 Apple gives 5 points when it touches the bowl
21 Game over when the apple touches the ground
22 Apple displays ”Game Over!” message when it touches the ground
23 Banana gives 8 points when it touches the bowl
24 Banana subtracts 8 points when it touches the ground
25 Banana displays ”-8” message when it touches the ground

Ti
m
er 26 Timer is decremented by one once a second

27 Game stops after 30 seconds elapsed
28 Bowl must display ”End!” after 30 seconds elapsed

Scratch concepts. At the end of the workshops, all students were
given a textual description of a game that they had to independently
implement. In this game (embedded in the Whisker GUI in Fig. 7),
the player controls a bowl with the left/right arrow keys on the
keyboard, and has to catch fruit falling down from the top of the
stage. The duration of the game is determined by a timer, and
different numbers of points are awarded for catching two different
types of fruit (apples and bananas). The game is lost when dropping
an apple. The solution consists of three sprites and two variables (for
time and points) and one script for each sprite as well as the stage.
After the workshop, all student solutions were manually graded
using a point system by the school teacher who defined the task,
resulting in a total of 37 graded implementations.

The second set consists of 24 of Code Club’s [17] Scratch pro-
grams, listed in Table 3. Code Club offers these projects along with
detailed instructions for programming beginners, and thus repre-
sents the target domain of Scratch programs we have in mind.
The projects cover a range of different modes of interaction. We
use the sample solutions to these projects provided by Code Club.

4.2 Experiment Procedure

RQ1. To answer RQ1, we used the textual description provided by
the school teacher, and implemented tests in Whisker. To do so,
we identified 28 properties of the specification listed in Table 2, and
created one test for each. We executed these tests on all 37 student
implementations 10 times [37] each to accommodate for potential
randomness To determine whether flakiness is a problem when
testing Scratch programs or not, we check for inconsistencies in
the repetitions of the test executions. A test is considered flaky if
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Table 3: Counts and input methods for Code Club projects

Project #
Sp

rit
es

#
Sc
rip

ts

#
Bl
oc
ks

Project #
Sp

rit
es

#
Sc
rip

ts

#
Bl
oc
ks

Archery 2 3 21 Lost In Space 6 4 24
Balloons 2 4 26 Memory 6 11 58
Beat The Goalie 3 6 30 Moonhack Scratch 2017 3 4 27
Boat Race 3 3 27 Paint Box 9 14 42
Brain Game 4 19 76 Poetry Generator 4 2 18
Catch The Dots 5 11 82 Rock Band 5 6 18
Chat Bot 2 2 26 Snowball Fight 4 7 37
Clone Wars 7 17 76 Space Junk 8 13 68
Create Y.O. World 13 26 165 Sprint 5 9 78
Dodgeball 5 10 78 Synchronised Swimming 2 7 23
Ghostbusters 5 11 58 Tech Toys 9 5 25
Green Your City 7 8 52 Username Generator 3 2 5

there exist both, pass and fail test outcomes of the test execution,
within the 10 repetitions. We conduct the experiment twice: With
and without a seeded random number generator.
RQ2. To answer RQ2, we use the test executions from RQ1 and
correlate the average number of failing tests with the points deter-
mined manually by the teacher. We provide a seed for the random
number generator of the Scratch VM such that flakyness of test
executions is limited.
RQ3. To check if random testing of Scratch programs is feasible,
we consider the Code Club dataset such that results generalize better.
On each of these projects we executedWhisker for 600 s, each with
random input generation, with 10 repetitions. We measured how
many of the blocks of the Scratch programs were covered (i.e.,
block coverage) throughout the execution and at the end.
RQ4. To determine if property-based testing is feasible and can
be used in a Scratch teaching context, we ran Whisker with
automated input generation 300 s on each of the 37 student im-
plementations of the fruit catching game. We chose to reset the
program every 10s during random testing since a correct imple-
mentation stops once the game is over. We chose to emit random
inputs with a duration between 50 ms and 100 ms every 150 ms.

4.3 Threats to Validity

Internal Validity. One threat to validity arises from our use of the
manual scores as ground truth to assess the quality of test results.
The manual scores were assigned by the school teacher immediately
after the course was held and the grading scheme was withheld
for this paper to avoid bias; only the textual specification given
to students was used to create test cases in our study. However,
even if the grading scheme had been known, our experiment would
still demonstrate that the grading task can be automated. Since
many Scratch programs use randomness, test outcomes may be
inconsistent. To eliminate the possibility of random chance affecting
our results as much as possible, we repeated all experiments and test
executions ten times, considered the average results, and explicitly
evaluated flakiness. Test executions may be influenced by how
Whisker invokes Scratch’s step function and interleaves its own
executions. While we omit details, we performed experiments to
measure the overhead: On average, execution of a single step in the
fruit catching game takes 1.97 ms, of which Whisker consumes
only 0.12 ms, and thus it is unlikely to interfere with test executions.
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Figure 9: Inconsistencies per test, without seeding the ran-

dom number generator; all except for test 4 on one project

are avoided by seeding the random number generator

External Validity. We used 25 different Scratch programs in our
experiments, and results may not generalize to other Scratch
programs. However, we aimed to choose programs that are repre-
sentative of the intended target usage in the field of education.
Construct Validity. We used a version of statement coverage to mea-
sure whetherWhisker can exercise Scratch programs sufficiently.
While our results to RQ4 suggest that this is an appropriate choice,
it might be that more rigorous coverage criteria would reveal more
limitations of the automated test generation approach.

4.4 RQ1: How frequent are flaky tests in

Scratch programs?

An important issue in automated testing is the problem of flaky
tests, that is, test cases that can yield different results for repeated
test executions on the same version of a program. To evaluate
how frequent this problem is in context of Scratch programs, we
consider the inconsistency of test results for the 10 repetitions of
the test execution. To isolate the role of controlling the random
number generator, we run the tests once with a seed, and once
without seeding. We use the term inconsistency to denote if a test
case produces a flaky result within these 10 executions on the same
version of the program.

Figure 9 shows the number of such inconsistencies for each of
the individual tests, with an unseeded random number generator.
For this experiment, overall only 4.15 % of all test-project pairs
showed flakiness. In total 14 out of 28 tests showed some degree of
flakiness at some point, which is similar to the degree of flakiness
observed in general software engineering [29], but it nevertheless
a cause for concern.

We manually investigated all cases of flakiness. In most cases,
the root cause for the flakiness is the underlying non-deterministic
nature of the programs, mainly caused by the reliance on some
form of random numbers as is common in game-like programs. We
therefore usedWhisker’s functionality to seed the random number
generator, which removed all flakiness except for one test on one
project. An analysis revealed that this flakyness was due to a bug
in the student submission: The current time was checked to decide
if a control-flow transition should be conducted or not instead of
relying on a less sensitive timer variable.

Summary (RQ 1) In our experiments, 4.15 % of the combina-
tions of test/project showed some flakiness if the random number
generator was not seeded. Seeding nearly eliminated flakyness
for all analyzed properties and projects.
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4.5 RQ2: Can automated Scratch tests be used

for automated grading?

The Scratch programs were graded by the school teacher using a
point-based grading scheme in the range of [0, 30], where a higher
score represents a better solution. To make automated grading pos-
sible, we would expect a larger number of tests to pass on better
solutions. Figure 10 shows the correlation between manually as-
signed point score and the number of tests passed. Overall, the Pear-
son’s correlation between the points and number of passing tests
is strong with a value of 0.497 (p-value < 0.002), which confirms
that better solutions lead to more passing tests, and the number of
passing tests is moderately correlated to manually assigned scores.

However, there are outliers in the plot. A closer investigation
revealed an issue in the textual specification created by the school
teacher: Although intended, it is not explicitly specified that pro-
grams have to be started by clicking Scratch’s green flag. While
the majority of students followed the pattern of using the green
flag, four students start their game after pressing a key (space bar,
up-key, a-key) instead. Since our tests also made the assumption
that games are started with the green flag, most tests failed on these
four projects. Arguably, this is an issue in the specification, not the
tests. Two other projects revealed a second source of discrepancy:
One project had omitted sprite initializations, such that sprites need
to be manually repositioned after each execution—a common error
in Scratch programs. A second project had placed the initializa-
tion code at the end of the game (when showing a "Game Over"
message), such that the initialization is incorrect for the initial exe-
cution, but correct for successive executions. In both cases many
tests failed as a result, while the teacher had apparently decided to
be generous. It is debatable whether in these two cases the tests or
the manual grading are correct. If we exclude these six cases and
only consider projects that are not affected by these specification
issues (i.e., only the filled dots in Fig. 10), the correlation is strong at
0.893 (p-value < 0.001). This demonstrates an essential aspect of all
automated grading approaches: To be applicable, the programming
task needs to be specified rather precisely. It is also important to
keep in mind that programming beginners are less biased regarding
possible implementations of a given requirement, which results
in a larger variety of solutions that the operationalization of the
specification must cover. As we will see in RQ4, property-based
testing can relax this requirement somewhat.
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Figure 11: Block Coverage achieved by Whisker automati-

cally on the Code Club projects.

Summary (RQ 2)We see a strong correlation between the man-
ually assigned points and the number of passing tests, confirming
that automated grading of Scratch programs is possible.

4.6 RQ3: How well can automated test

generation cover Scratch programs?

A prerequisite for property-based testing is a test generator that can
sufficiently cover the behavior of Scratch programs. To determine
how wellWhisker’s test generation approach covers Scratch pro-
grams, we applied it to the 24 projects of the Code Club dataset.
Figure 11 summarizes the block coverage achieved by Whisker
using random inputs after 10 minutes; the time needed to achieve
different levels of coverage is encoded in the shading of the bars.
After ten minutes of run time,Whisker achieved an average cov-
erage of 95.25 %, with the lowest coverage for a project being 71 %
and the highest being 100 %.

There are two projects with clearly lower coverage than the
others. “Create Your Own World” implements an adventure game
with a player sprite, which starts on the left of the screen and is
able to move through several rooms through a portal on the right
side of the screen. This project is difficult to cover, because the
sprite needs to move a long way in one direction to reach a screen
transition. Due to the random nature of the inputs thatWhisker
selects, it takes a long time for the sprite to move longer distances.
“Memory” revolves around four colored drums, for which in each
round a random sequence is generated; the player then has to click
the drums in that order. Clicking an incorrect drum leads to a game-
over state. Random input selection is unlikely to select the correct
sequence of drums, and thus coverage remains low. Both of these
cases demonstrate general limitations of random testing, which are
particularly relevant in the game-like nature of Scratch projects,
suggesting that future work should consider more advanced test
generation techniques (e.g., search-based testing [19]).

Summary (RQ 3) On average, Whisker achieved 95.25 % block
coverage on the 24 Code Club projects.

4.7 RQ4: Property-based automated grading?

Figure 12 shows the correlation of the number of points resulting
frommanual grading and the number of properties determined to be
violated, using property-based testing with random test inputs. The
overall Pearson’s correlation is 0.788 (p-value < 0.001); excluding
the same projects that were discussed for RQ2 as related to the
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unclear specification, the correlation is 0.873 (p-value < 0.001);.
Interestingly, the correlation is thus higher overall than on the
manually written test suite (RQ2); this is because the four projects
that use other means than the green flag to start the project will
receive the starting event they are waiting for from the random
test generator. Consequently, automated test generation provides
some additional flexibility compared to manually written tests.

Summary (RQ 4) The strong correlation between manual grad-
ing and property violations confirms that property-based testing
of Scratch programs for grading is possible.

5 RELATEDWORK

Analysis of Scratch Programs. Although there has been work on
showing the prevalence [1, 41, 45, 46] and effects [21] of code smells
in Scratch programs, only little work on analysis of Scratch pro-
grams has been presented. Hairball [7] is a basic static analysis tool
that implements detectors for basic types of code smells (e.g., long
scripts, duplicated code). It serves as basis for the web-based assess-
ment tool Dr. Scratch [36], which measures and scores the complex-
ity and quality of Scratch programs. These tools match patterns
in the JSON-based Scratch data format and cannot judge func-
tional correctness like testing could. The concept of testing Scratch
programs was discussed in the context of the ITCH (Individual Test-
ing of Computer Homework for Scratch Assignments) [23] tool,
which converts Scratch programs to Python code and then ap-
plies tests on the Python code. However, it is limited to checking
inputs and outputs in terms of the "ask" and "say" blocks, and thus
only supports a small subset of Scratch functionality, whereas our
approach covers the entire functionality of Scratch.
Automated Grading. Although we envision that our testing ap-
proach will enable many different types of dynamic analyses, an
immediate application lies in automated grading. The idea of au-
tomated grading has been discussed since the early beginnings of
programming education [15], and grading systems are available
for many different programming languages and types of applica-
tions [22]. A central component of most automated grading systems
is the use of functional tests (e.g., input/output pairs, or unit tests) to
derive a score. Property-based testing as an alternative has been ex-
plored on basic Java programming exercises [11], providing further
evidence for the feasibility of our proposed application scenario,
and there is evidence that automated test generation can lead to

increased grading accuracy [2] over manually written tests. While
we compared the test scores directly with the teacher grades in
our study, grading systems generally tend to combine functional
correctness scores with other metrics on code complexity and qual-
ity, and in future work we consider combining Whisker tests with
other quality metrics for grading. Many test-based automated grad-
ing systems focus on API-level tests with predefined interfaces,
whereas GUI-level tools have to face the challenge of providing
robust test harnesses for flexible GUIs. In-line with our approach,
it has previously been shown that specification-driven automated
testing can help to overcome such issues [13, 43].
Automated Testing of Event-Driven Programs. Our framework uses
and generates GUI-centered system tests. For our initial implemen-
tation of Whisker, we used a basic random testing approach. There
are other general GUI-testing approaches [38] that could be used
to improve theWhisker test generator, for example, by explicitly
modelling the event-flow of the programs [34], using search-based
optimizations [19] or symbolic execution [35] to guide test gener-
ation towards covering all code. While the current random event
generator already provided promising results, we will consider
improving the Whisker test generator in future work.

6 CONCLUSIONS

Block-based programming environments like Scratch are highly
popular and successful at engaging young learners, but are lacking
means for automatically analyzing programs. In this paper, we have
introduced a theoretical framework for testing Scratch programs,
and we presentedWhisker, a concrete instantiation that can au-
tomatically test Scratch programs. Our experiments on student
and teacher-written Scratch programs demonstrate thatWhisker
tests can be used to automatically grade Scratch programs.

Specifying properties and creating tests are major challenges in
automated testing in general. In the context of Scratch testing, the
programmers (i.e., learners) are unlikely to write their own tests,
and educators may not be best qualified for this task either. We are
investigating ways to provide more convenient ways to represent
fuzzy properties appropriate for graphical, game-like programs; for
example, by expressing them with Scratch blocks, or by inferring
them from executions on a model solution.

While our experiments confirmed that Whisker can already
achieve high degrees of block coverage with its random testing
approach, new notions of coverage and more systematic testing
approaches (e.g., search-based testing) may further improve the
effectiveness of Scratch testing.

Although we used Scratch testing for automated grading in this
paper, we envision many further applications of automated tests.
The educational nature of Scratch interactions would benefit from
the dynamic analysis enabled by a testing framework likeWhisker.
Applications range from supporting learners with fault localization
to producing hints and repairs automatically. To support this area of
research, the latest version of Whisker is available as open source
at github.com/se2p/whisker-main.
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